[1] | Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22: 2601–2611. doi: 10.1101/gad.1700308
|
[2] | Macek B, Mijakovic I (2011) Site-specific analysis of bacterial phosphoproteomes. Proteomics 11: 3002–3011. doi: 10.1002/pmic.201100012
|
[3] | table-1-captionPrisic S, Dankwa S, Schwartz D, Chou MF, Locasale JW, et al. (2010) Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci U S A 107: 7521–7526. doi: 10.1073/pnas.0913482107
|
[4] | Grangeasse C, Nessler S, Mijakovic I (2012) Bacterial tyrosine kinases: evolution, biological function and structural insights. Philos Trans R Soc Lond B Biol Sci 367: 2640–2655. doi: 10.1098/rstb.2011.0424
|
[5] | Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21: 140–146. doi: 10.1016/j.ceb.2009.01.028
|
[6] | Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: 123–140. doi: 10.1038/nrmicro818
|
[7] | Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11: 142–201.
|
[8] | Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533. doi: 10.1038/35054089
|
[9] | Perna NT, Glasner JD, Burland V, Plunkett G, III (2002) The Genomes of Escherichia coli K-12 and Pathogenic E. coli. In: Donnenberg MS, editors. E. coli: Genomics, Evolution and Pathogenesis. San Diego: Elsevier Science. pp. 3–44.
|
[10] | McDaniel TK, Kaper JB (1997) A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23: 399–407. doi: 10.1046/j.1365-2958.1997.2311591.x
|
[11] | Garmendia J, Frankel G, Crepin VF (2005) Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73: 2573–2585. doi: 10.1128/iai.73.5.2573-2585.2005
|
[12] | Campellone KG (2010) Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J 277: 2390–2402. doi: 10.1111/j.1742-4658.2010.07653.x
|
[13] | Deng W, Vallance BA, Li Y, Puente JL, Finlay BB (2003) Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol Microbiol 48: 95–115. doi: 10.1046/j.1365-2958.2003.03429.x
|
[14] | Cozzone AJ, Grangeasse C, Doublet P, Duclos B (2004) Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181: 171–181. doi: 10.1007/s00203-003-0640-6
|
[15] | Shi L, Kobir A, Jers C, Mijakovic I (2010) Bacterial Protein-Tyrosine Kinases. Current Proteomics 7: 188–194. doi: 10.2174/157016410792928198
|
[16] | Ilan O, Bloch Y, Frankel G, Ullrich H, Geider K, et al. (1999) Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. EMBO J 18: 3241–3248. doi: 10.1093/emboj/18.12.3241
|
[17] | Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, et al. (2009) Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics 8: 2613–2623. doi: 10.1074/mcp.m900276-mcp200
|
[18] | Macek B, Gnad F, Soufi B, Kumar C, Olsen JV, et al. (2008) Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics 7: 299–307. doi: 10.1074/mcp.m700311-mcp200
|
[19] | Bergstrom LS, Molin M, Savitski MM, Emilsson L, Astrom J, et al. (2008) Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation. J Proteome Res 7: 2897–2910. doi: 10.1021/pr8000546
|
[20] | Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104: 1488–1493. doi: 10.1073/pnas.0609836104
|
[21] | Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462. doi: 10.1126/science.277.5331.1453
|
[22] | Donohue-Rolfe A, Kondova I, Oswald S, Hutto D, Tzipori S (2000) Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J Infect Dis 181: 1825–1829. doi: 10.1086/315421
|
[23] | Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, et al. (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308: 681–685. doi: 10.1056/nejm198303243081203
|
[24] | Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127: 635–648. doi: 10.1016/j.cell.2006.09.026
|
[25] | Soufi B, Gnad F, Jensen PR, Petranovic D, Mann M, et al. (2008) The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8: 3486–3493. doi: 10.1002/pmic.200800069
|
[26] | Zietkiewicz S, Slusarz MJ, Slusarz R, Liberek K, Rodziewicz-Motowidlo S (2010) Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli. Biopolymers 93: 47–60. doi: 10.1002/bip.21294
|
[27] | Schwartz D, Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23: 1391–1398. doi: 10.1038/nbt1146
|
[28] | Sun X, Ge F, Xiao CL, Yin XF, Ge R, et al. (2010) Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 9: 275–282. doi: 10.1021/pr900612v
|
[29] | Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004) PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4: 1551–1561. doi: 10.1002/pmic.200300772
|
[30] | Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009) Human Protein Reference Database–2009 update. Nucleic Acids Res 37: D767–D772. doi: 10.1093/nar/gkn892
|
[31] | Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99: 17020–17024. doi: 10.1073/pnas.252529799
|
[32] | Soung GY, Miller JL, Koc H, Koc EC (2009) Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes. J Proteome Res 8: 3390–3402. doi: 10.1021/pr900042e
|
[33] | Larner AC, David M, Feldman GM, Igarashi K, Hackett RH, et al. (1993) Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 261: 1730–1733. doi: 10.1126/science.8378773
|
[34] | Baskaran R, Dahmus ME, Wang JY (1993) Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc Natl Acad Sci U S A 90: 11167–11171. doi: 10.1073/pnas.90.23.11167
|
[35] | Klein G, Dartigalongue C, Raina S (2003) Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48: 269–285. doi: 10.1046/j.1365-2958.2003.03449.x
|
[36] | Mijakovic I, Petranovic D, Macek B, Cepo T, Mann M, et al. (2006) Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34: 1588–1596. doi: 10.1093/nar/gkj514
|
[37] | Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2: 391–400. doi: 10.1038/nrmicro883
|
[38] | Arold ST, Leonard PG, Parkinson GN, Ladbury JE (2010) H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci U S A 107: 15728–15732. doi: 10.1073/pnas.1006966107
|
[39] | Shindo H, Iwaki T, Ieda R, Kurumizaka H, Ueguchi C, et al. (1995) Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett 360: 125–131. doi: 10.1016/0014-5793(95)00079-o
|
[40] | Singh RK, Gunjan A (2011) Histone tyrosine phosphorylation comes of age. Epigenetics 6: 153–160. doi: 10.4161/epi.6.2.13589
|
[41] | Bachhawat P, Stock AM (2007) Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 189: 5987–5995. doi: 10.1128/jb.00049-07
|
[42] | Hansen AM, Gu Y, Li M, Andrykovitch M, Waugh DS, et al. (2005) Structural basis for the function of stringent starvation protein a as a transcription factor. J Biol Chem 280: 17380–17391. doi: 10.1074/jbc.m501444200
|
[43] | Mellies JL, Barron AM, Carmona AM (2007) Enteropathogenic and enterohemorrhagic Escherichia coli virulence gene regulation. Infect Immun 75: 4199–4210. doi: 10.1128/iai.01927-06
|
[44] | Njoroge JW, Nguyen Y, Curtis MM, Moreira CG, Sperandio V (2012) Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. MBio 3: e00280-12 mBio 3(5):e00280–12. doi: 10.1128/mBio.00280-12.
|
[45] | Hansen AM, Jin DJ (2012) SspA up-regulates gene expression of the LEE pathogenicity island by decreasing H-NS levels in enterohemorrhagic Escherichia coli. BMC Microbiol 12: 231. doi: 10.1186/1471-2180-12-231
|
[46] | Lodato PB, Kaper JB (2009) Post-transcriptional processing of the LEE4 operon in enterohaemorrhagic Escherichia coli. Mol Microbiol 71: 273–290. doi: 10.1111/j.1365-2958.2008.06530.x
|
[47] | Hansen AM, Kaper JB (2009) Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Mol Microbiol 73: 446–465. doi: 10.1111/j.1365-2958.2009.06781.x
|
[48] | Bhatt S, Edwards AN, Nguyen HT, Merlin D, Romeo T, et al. (2009) The RNA binding protein CsrA is a pleiotropic regulator of the locus of enterocyte effacement pathogenicity island of enteropathogenic Escherichia coli. Infect Immun 77: 3552–3568. doi: 10.1128/iai.00418-09
|
[49] | Yang F, Peng Y, Schoenberg DR (2004) Endonuclease-mediated mRNA decay requires tyrosine phosphorylation of polysomal ribonuclease 1 (PMR1) for the targeting and degradation of polyribosome-bound substrate mRNA. J Biol Chem 279: 48993–49002. doi: 10.1074/jbc.m409776200
|
[50] | Luo W, Donnenberg MS (2011) Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB. J Bacteriol 193: 2972–2980. doi: 10.1128/jb.00153-11
|
[51] | Suits MDL, Lang J, Pal GP, Couture M, Jia Z (2009) Structure and heme binding properties of Escherichia coli O157:H7 ChuX. Protein Science 18: 825–838. doi: 10.1002/pro.84
|
[52] | Shifrin Y, Peleg A, Ilan O, Nadler C, Kobi S, et al. (2008) Transient shielding of intimin and the type III secretion system of enterohemorrhagic and enteropathogenic Escherichia coli by a group 4 capsule. J Bacteriol 190: 5063–5074. doi: 10.1128/jb.00440-08
|
[53] | Hansen AM, Qiu Y, Yeh N, Blattner FR, Durfee T, et al. (2005) SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol Microbiol 56: 719–734. doi: 10.1111/j.1365-2958.2005.04567.x
|
[54] | Knutton S, Baldwin T, Williams PH, McNeish AS (1989) Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57: 1290–1298.
|
[55] | Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11: 1246–1255. doi: 10.1101/gr.186501
|
[56] | Lowell CA, Soriano P, Maness PF (1994) Functional overlap in the src-gene family: Inactivation of hck and fgr impairs natural immunity. Genes Dev 8: 387–398. doi: 10.1101/gad.8.4.387
|
[57] | Wang H, Chang-Wong T, Tang HY, Speicher DW (2010) Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes. J Proteome Res 9: 1032–1040. doi: 10.1021/pr900927y
|
[58] | Jadeau F, Bechet E, Cozzone AJ, Deleage G, Grangeasse C, et al. (2008) Identification of the idiosyncratic bacterial protein tyrosine kinase (BY-kinase) family signature. Bioinformatics 24: 2427–2430. doi: 10.1093/bioinformatics/btn462
|
[59] | Grangeasse C, Doublet P, Cozzone AJ (2002) Tyrosine phosphorylation of protein kinase Wzc from Escherichia coli K12 occurs through a two-step process. J Biol Chem 277: 7127–7135. doi: 10.1074/jbc.m110880200
|
[60] | Lee DC, Zheng J, She YM, Jia Z (2008) Structure of Escherichia coli tyrosine kinase Etk reveals a novel activation mechanism. EMBO J 27: 1758–1766. doi: 10.1038/emboj.2008.97
|
[61] | Olivares-Illana V, Meyer P, Bechet E, Gueguen-Chaignon V, Soulat D, et al. (2008) Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus. PLoS Biol 6: e143. doi: 10.1371/journal.pbio.0060143
|
[62] | Shimada T, Yamamoto K, Ishihama A (2011) Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 193: 649–659. doi: 10.1128/jb.01214-10
|
[63] | Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, et al. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327: 1004–1007. doi: 10.1126/science.1179687
|
[64] | Jones JD, O'Connor CD (2011) Protein acetylation in prokaryotes. Proteomics 11: 3012–3022. doi: 10.1002/pmic.201000812
|
[65] | Lima BP, Antelmann H, Gronau K, Chi BK, Becher D, et al. (2011) Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol Microbiol 81: 1190–1204. doi: 10.1111/j.1365-2958.2011.07742.x
|
[66] | van Noort V, Seebacher J, Bader S, Mohammed S, Vonkova I, et al. (2012) Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol Syst Biol 8: 571. doi: 10.1038/msb.2012.4
|
[67] | Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, et al. (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312: 1211–1214. doi: 10.1126/science.1126867
|
[68] | Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11: 113–127. doi: 10.1038/nrm2838
|
[69] | Farris M, Grant A, Richardson TB, O'Connor CD (1998) BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli and epithelial cells. Mol Microbiol 28: 265–279. doi: 10.1046/j.1365-2958.1998.00793.x
|
[70] | Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, et al. (2003) Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 48: 507–521. doi: 10.1046/j.1365-2958.2003.t01-1-03447.x
|
[71] | Zhao X, Lam JS (2002) WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J Biol Chem 277: 4722–4730. doi: 10.1074/jbc.m107803200
|
[72] | Wu J, Ohta N, Zhao JL, Newton A (1999) A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc Natl Acad Sci U S A 96: 13068–13073. doi: 10.1073/pnas.96.23.13068
|
[73] | Friedman DI, Mozola CC, Beeri K, Ko CC, Reynolds JL (2011) Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection. Mol Microbiol 82: 567–577. doi: 10.1111/j.1365-2958.2011.07847.x
|
[74] | Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ (2007) Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 9: 797–803. doi: 10.1038/ncb1605
|
[75] | Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645. doi: 10.1073/pnas.120163297
|
[76] | Stokes MG, Titball RW, Neeson BN, Galen JE, Walker NJ, et al. (2007) Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 75: 1827–1834. doi: 10.1128/iai.01242-06
|
[77] | Eng JK, McCormack AL, Yates JR III (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 976–989. doi: 10.1016/1044-0305(94)80016-2
|
[78] | Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M, et al. (2007) Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res 35: 7577–7590. doi: 10.1093/nar/gkm740
|
[79] | az-Mejia JJ, Perez-Rueda E, Segovia L (2007) A network perspective on the evolution of metabolism by gene duplication. Genome Biol 8: R26. doi: 10.1186/gb-2007-8-2-r26
|
[80] | R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
|
[81] | Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432. doi: 10.1093/bioinformatics/btq675
|
[82] | Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–W549. doi: 10.1093/nar/gkq366
|
[83] | Amanchy R, Kandasamy K, Mathivanan S, Periaswamy B, Reddy R, et al. (2011) Identification of Novel Phosphorylation Motifs Through an Integrative Computational and Experimental Analysis of the Human Phosphoproteome. J Proteomics Bioinform 4: 22–35. doi: 10.4172/jpb.1000163
|
[84] | Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
|
[85] | Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33: W244–W248. doi: 10.1093/nar/gki408
|