全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influenza Virus Reassortment Occurs with High Frequency in the Absence of Segment Mismatch

DOI: 10.1371/journal.ppat.1003421

Full-Text   Cite this paper   Add to My Lib

Abstract:

Reassortment is fundamental to the evolution of influenza viruses and plays a key role in the generation of epidemiologically significant strains. Previous studies indicate that reassortment is restricted by segment mismatch, arising from functional incompatibilities among components of two viruses. Additional factors that dictate the efficiency of reassortment remain poorly characterized. Thus, it is unclear what conditions are favorable for reassortment and therefore under what circumstances novel influenza A viruses might arise in nature. Herein, we describe a system for studying reassortment in the absence of segment mismatch and exploit this system to determine the baseline efficiency of reassortment and the effects of infection dose and timing. Silent mutations were introduced into A/Panama/2007/99 virus such that high-resolution melt analysis could be used to differentiate all eight segments of the wild-type and the silently mutated variant virus. The use of phenotypically identical parent viruses ensured that all progeny were equally fit, allowing reassortment to be measured without selection bias. Using this system, we found that reassortment occurred efficiently (88.4%) following high multiplicity infection, suggesting the process is not appreciably limited by intracellular compartmentalization. That co-infection is the major determinant of reassortment efficiency in the absence of segment mismatch was confirmed with the observation that the proportion of viruses with reassortant genotypes increased exponentially with the proportion of cells co-infected. The number of reassortants shed from co-infected guinea pigs was likewise dependent on dose. With 106 PFU inocula, 46%–86% of viruses isolated from guinea pigs were reassortants. The introduction of a delay between infections also had a strong impact on reassortment and allowed definition of time windows during which super-infection led to reassortment in culture and in vivo. Overall, our results indicate that reassortment between two like influenza viruses is efficient but also strongly dependent on dose and timing of the infections.

References

[1]  Scholtissek C (1994) Source for influenza pandemics. Eur J Epidemiol 10: 455–458. doi: 10.1007/bf01719674
[2]  Wright PF, Neumann G, Kawaoka Y (2006) Orthomyxoviruses. In: Knipe DM, Howley PM, editors. Fields Virology. 5 ed. pp. 1691–1740.
[3]  Scholtissek C, Rohde W, Von Hoyningen V, Rott R (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87: 13–20. doi: 10.1016/0042-6822(78)90153-8
[4]  Li KS, Guan Y, Wang J, Smith GJD, Xu KM, et al. (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430: 209–213. doi: 10.1038/nature02746
[5]  Trifonov V, Khiabanian H, Greenbaum B, Rabadan R (2009) The origin of the recent swine influenza A(H1N1) virus infecting humans. Euro Surveill 14: 19193.
[6]  Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, et al. (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1122–1125. doi: 10.1038/nature08182
[7]  Schweiger B, Bruns L, Meixenberger K (2006) Reassortment between human A(H3N2) viruses is an important evolutionary mechanism. Vaccine 24: 6683–6690. doi: 10.1016/j.vaccine.2006.05.105
[8]  Nelson MI, Viboud C, Simonsen L, Bennett RT, Griesemer SB, et al. (2008) Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog 4: e1000012. doi: 10.1371/journal.ppat.1000012
[9]  Nelson MI, Simonsen L, Viboud C, Miller MA, Taylor J, et al. (2006) Stochastic processes are key determinants of short-term evolution in influenza a virus. PLoS Pathog 2: e125. doi: 10.1371/journal.ppat.0020125
[10]  Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, et al. (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3: e300. doi: 10.1371/journal.pbio.0030300
[11]  Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, et al. (2008) The genomic and epidemiological dynamics of human influenza A virus. Nature 453: 615–619. doi: 10.1038/nature06945
[12]  Simonsen L, Viboud C, Grenfell BT, Dushoff J, Jennings L, et al. (2007) The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol Biol Evol 24: 1811–1820. doi: 10.1093/molbev/msm103
[13]  Lindstrom SE, Cox NJ, Klimov A (2004) Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957–1972: evidence for genetic divergence and multiple reassortment events. Virology 328: 101–119. doi: 10.1016/j.virol.2004.06.009
[14]  Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, et al. (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437: 1162–1166. doi: 10.1038/nature04239
[15]  Lubeck MD, Palese P, Schulman JL (1979) Nonrandom association of parental genes in influenza A virus recombinants. Virology 95: 269–274. doi: 10.1016/0042-6822(79)90430-6
[16]  Greenbaum BD, Li OT, Poon LL, Levine AJ, Rabadan R (2012) Viral reassortment as an information exchange between viral segments. Proc Natl Acad Sci U S A 109: 3341–3346. doi: 10.1073/pnas.1113300109
[17]  Gao Q, Palese P (2009) Rewiring the RNAs of influenza virus to prevent reassortment. Proc Natl Acad Sci U S A 106: 15891–15896. doi: 10.1073/pnas.0908897106
[18]  Li C, Hatta M, Watanabe S, Neumann G, Kawaoka Y (2008) Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol 82: 11880–11888. doi: 10.1128/jvi.01445-08
[19]  Jackson S, Van Hoeven N, Chen LM, Maines TR, Cox NJ, et al. (2009) Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J Virol 83: 8131–8140. doi: 10.1128/jvi.00534-09
[20]  Maines TR, Chen LM, Matsuoka Y, Chen H, Rowe T, et al. (2006) Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci U S A 103: 12121–12126. doi: 10.1053/j.jepm.2006.11.016
[21]  Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428. doi: 10.1038/nature10831
[22]  Banbura MW, Kawaoka Y, Thomas TL, Webster RG (1991) Reassortants with equine 1 (H7N7) influenza virus hemagglutinin in an avian influenza virus genetic background are pathogenic in chickens. Virology 184: 469–471. doi: 10.1016/0042-6822(91)90872-9
[23]  Octaviani CP, Ozawa M, Yamada S, Goto H, Kawaoka Y (2010) High level of genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses. J Virol 84: 10918–10922. doi: 10.1128/jvi.01140-10
[24]  Schrauwen EJ, Herfst S, Chutinimitkul S, Bestebroer TM, Rimmelzwaan GF, et al. (2011) Possible increased pathogenicity of pandemic (H1N1) 2009 influenza virus upon reassortment. Emerg Infect Dis 17: 200–208. doi: 10.3201/eid1702.101268
[25]  Kiseleva I, Dubrovina I, Bazhenova E, Fedorova E, Larionova N, et al. (2012) Possible outcomes of reassortment in vivo between wild type and live attenuated influenza vaccine strains. Vaccine 30: 7395–7399. doi: 10.1016/j.vaccine.2012.09.076
[26]  Ma W, Lager KM, Lekcharoensuk P, Ulery ES, Janke BH, et al. (2010) Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. J Gen Virol 91: 2314–2321. doi: 10.1099/vir.0.021402-0
[27]  Qiao C, Liu Q, Bawa B, Shen H, Qi W, et al. (2012) Pathogenicity and transmissibility of reassortant H9 influenza viruses with genes from pandemic H1N1 virus. J Gen Virol 93: 2337–2345. doi: 10.1099/vir.0.044040-0
[28]  Fulvini AA, Ramanunninair M, Le J, Pokorny BA, Arroyo JM, et al. (2011) Gene constellation of influenza A virus reassortants with high growth phenotype prepared as seed candidates for vaccine production. PLoS One 6: e20823. doi: 10.1371/journal.pone.0020823
[29]  Baez M, Palese P, Kilbourne ED (1980) Gene composition of high-yielding influenza vaccine strains obtained by recombination. J Infect Dis 141: 362–365. doi: 10.1093/infdis/141.3.362
[30]  Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49: 853–860. doi: 10.1373/49.6.853
[31]  Emma P, Kamen A (2013) Real-time monitoring of influenza virus production kinetics in HEK293 cell cultures. Biotechnol Prog 29: 275–284. doi: 10.1002/btpr.1601
[32]  Bodewes R, Nieuwkoop NJ, Verburgh RJ, Fouchier RA, Osterhaus AD, et al. (2012) Use of influenza A viruses expressing reporter genes to assess the frequency of double infections in vitro. J Gen Virol 93: 1645–1648. doi: 10.1099/vir.0.042671-0
[33]  Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78: 12665–12667. doi: 10.1128/jvi.78.22.12665-12667.2004
[34]  van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, et al. (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171: 1215–1223. doi: 10.2353/ajpath.2007.070248
[35]  Vincent AL, Ma W, Lager KM, Janke BH, Richt JA (2008) Swine influenza viruses a North American perspective. Adv Virus Res 72: 127–154. doi: 10.1016/s0065-3527(08)00403-x
[36]  Garcia-Sastre A (2011) Induction and evasion of type I interferon responses by influenza viruses. Virus Res 162: 12–18. doi: 10.1016/j.virusres.2011.10.017
[37]  Huang IC, Li W, Sui J, Marasco W, Choe H, et al. (2008) Influenza A virus neuraminidase limits viral superinfection. J Virol 82: 4834–4843. doi: 10.1128/jvi.00079-08
[38]  Marsh GA, Hatami R, Palese P (2007) Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol 81: 9727–9736. doi: 10.1128/jvi.01144-07
[39]  Marsh GA, Rabadan R, Levine AJ, Palese P (2008) Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. J Virol 82: 2295–2304. doi: 10.1128/jvi.02267-07
[40]  Chou YY, Vafabakhsh R, Doganay S, Gao Q, Ha T, et al. (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc Natl Acad Sci U S A 109: 9101–9106. doi: 10.1073/pnas.1206069109
[41]  Fujii K, Fujii Y, Noda T, Muramoto Y, Watanabe T, et al. (2005) Importance of both the coding and the segment-specific noncoding regions of the influenza A virus NS segment for its efficient incorporation into virions. J Virol 79: 3766–3774. doi: 10.1128/jvi.79.6.3766-3774.2005
[42]  Fujii Y, Goto H, Watanabe T, Yoshida T, Kawaoka Y (2003) Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci U S A 100: 2002–2007. doi: 10.1073/pnas.0437772100
[43]  Muramoto Y, Takada A, Fujii K, Noda T, Iwatsuki-Horimoto K, et al. (2006) Hierarchy among viral RNA (vRNA) segments in their role in vRNA incorporation into influenza A virions. J Virol 80: 2318–2325. doi: 10.1128/jvi.80.5.2318-2325.2006
[44]  Fournier E, Moules V, Essere B, Paillart JC, Sirbat JD, et al. (2012) A supramolecular assembly formed by influenza A virus genomic RNA segments. Nucleic Acids Res 40: 2197–2209. doi: 10.1093/nar/gkr985
[45]  Hutchinson EC, Curran MD, Read EK, Gog JR, Digard P (2008) Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus. J Virol 82: 11869–11879. doi: 10.1128/jvi.01634-08
[46]  Palese P, Shaw ML (2006) Orthomyxoviridae: The Viruses and Their Replication. In: Knipe DMH, P M., editor. Fields Virology. Philidelphia: Lippincott-Raven. pp. 1647–1690.
[47]  Inagaki A, Goto H, Kakugawa S, Ozawa M, Kawaoka Y (2012) Competitive incorporation of homologous gene segments of influenza A virus into virions. J Virol 86: 10200–10202. doi: 10.1128/jvi.01204-12
[48]  Hughes J, Allen RC, Baguelin M, Hampson K, Baillie GJ, et al. (2012) Transmission of equine influenza virus during an outbreak is characterized by frequent mixed infections and loose transmission bottlenecks. PLoS Pathog 8: e1003081. doi: 10.1371/journal.ppat.1003081
[49]  Murcia PR, Baillie GJ, Daly J, Elton D, Jervis C, et al. (2010) Intra- and interhost evolutionary dynamics of equine influenza virus. J Virol 84: 6943–6954. doi: 10.1128/jvi.00112-10
[50]  Murcia PR, Hughes J, Battista P, Lloyd L, Baillie GJ, et al. (2012) Evolution of an Eurasian avian-like influenza virus in naive and vaccinated pigs. PLoS Pathog 8: e1002730. doi: 10.1371/journal.ppat.1002730
[51]  Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P (2006) The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci U S A 103: 9988–9992. doi: 10.1073/pnas.0604157103
[52]  Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, et al. (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73: 9679–9682.
[53]  Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5: e1000252. doi: 10.1371/journal.ppat.1000252
[54]  Li ZN, Mueller SN, Ye L, Bu Z, Yang C, et al. (2005) Chimeric influenza virus hemagglutinin proteins containing large domains of the Bacillus anthracis protective antigen: protein characterization, incorporation into infectious influenza viruses, and antigenicity. J Virol 79: 10003–10012. doi: 10.1128/jvi.79.15.10003-10012.2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133