全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genome-wide RNAi Screen Reveals a New Role of a WNT/CTNNB1 Signaling Pathway as Negative Regulator of Virus-induced Innate Immune Responses

DOI: 10.1371/journal.ppat.1003416

Full-Text   Cite this paper   Add to My Lib

Abstract:

To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

References

[1]  Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, et al. (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175: 2851–2858.
[2]  Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669–682. doi: 10.1016/j.cell.2005.08.012
[3]  Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172. doi: 10.1038/nature04193
[4]  Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740. doi: 10.1016/j.molcel.2005.08.014
[5]  Kawai T, Takahashi K, Sato S, Coban C, Kumar H, et al. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981–988. doi: 10.1038/ni1243
[6]  Komuro A, Bamming D, Horvath CM (2008) Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 43: 350–358. doi: 10.1016/j.cyto.2008.07.011
[7]  Liang Y, Ishida H, Lenz O, Lin TI, Nyanguile O, et al. (2008) Antiviral suppression vs restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors. Gastroenterology 135: 1710–1718 e1712. doi: 10.1053/j.gastro.2008.07.023
[8]  Kim H, Seed B (2010) The transcription factor MafB antagonizes antiviral responses by blocking recruitment of coactivators to the transcription factor IRF3. Nat Immunol 11: 743–750. doi: 10.1038/ni.1897
[9]  Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, et al. (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325: 340–343. doi: 10.1126/science.1173164
[10]  Valanne S, Myllymaki H, Kallio J, Schmid MR, Kleino A, et al. (2010) Genome-wide RNA interference in Drosophila cells identifies G protein-coupled receptor kinase 2 as a conserved regulator of NF-kappaB signaling. J Immunol 184: 6188–6198. doi: 10.4049/jimmunol.1000261
[11]  Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, et al. (2008) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451: 573–577. doi: 10.1038/nature06501
[12]  Zhang XD (2007) A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays. J Biomol Screen 12: 645–655. doi: 10.1177/1087057107300645
[13]  Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17: 193–201. doi: 10.1016/j.tcb.2007.02.003
[14]  Kimura T, Hashimoto I, Nagase T, Fujisawa J (2004) CRM1-dependent, but not ARE-mediated, nuclear export of IFN-alpha1 mRNA. J Cell Sci 117: 2259–2270. doi: 10.1242/jcs.01076
[15]  Cullen BR (2003) Nuclear mRNA export: insights from virology. Trends Biochem Sci 28: 419–424. doi: 10.1016/s0968-0004(03)00142-7
[16]  Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT (2004) Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119: 381–392. doi: 10.1016/j.cell.2004.09.029
[17]  Schroder M, Baran M, Bowie AG (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J 27: 2147–2157. doi: 10.1038/emboj.2008.143
[18]  Soulat D, Burckstummer T, Westermayer S, Goncalves A, Bauch A, et al. (2008) The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J 27: 2135–2146. doi: 10.1038/emboj.2008.126
[19]  Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008) Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen. Science 319: 921–926. doi: 10.1126/science.1152725
[20]  Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, et al. (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135: 49–60. doi: 10.1016/j.cell.2008.07.032
[21]  Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, et al. (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4: 495–504. doi: 10.1016/j.chom.2008.10.004
[22]  Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, et al. (2009) A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc Natl Acad Sci U S A 106: 16410–16415. doi: 10.1073/pnas.0907439106
[23]  Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, et al. (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci U S A 104: 12884–12889. doi: 10.1073/pnas.0704894104
[24]  Karlas A, Machuy N, Shin Y, Pleissner KP, Artarini A, et al. (2010) Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463: 818–822. doi: 10.1038/nature08760
[25]  Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, et al. (2010) Human host factors required for influenza virus replication. Nature 463: 813–817. doi: 10.1038/nature08699
[26]  Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, et al. (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139: 1255–1267. doi: 10.1016/j.cell.2009.12.018
[27]  Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD, et al. (2008) RNA interference screen for human genes associated with West Nile virus infection. Nature 455: 242–245. doi: 10.1038/nature07207
[28]  Yeretssian G, Correa RG, Doiron K, Fitzgerald P, Dillon CP, et al. (2011) Non-apoptotic role of BID in inflammation and innate immunity. Nature 474: 96–99. doi: 10.1038/nature09982
[29]  Ting JP, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science 327: 286–290. doi: 10.1126/science.1184004
[30]  Mgbemena V, Segovia JA, Chang TH, Tsai SY, Cole GT, et al. (2012) Transactivation of inducible nitric oxide synthase gene by Kruppel-like factor 6 regulates apoptosis during influenza A virus infection. J Immunol 189: 606–615. doi: 10.4049/jimmunol.1102742
[31]  Chuang SS, Helvig C, Taimi M, Ramshaw HA, Collop AH, et al. (2004) CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids. J Biol Chem 279: 6305–6314. doi: 10.1074/jbc.m311830200
[32]  Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20: 781–810. doi: 10.1146/annurev.cellbio.20.010403.113126
[33]  Semenov MV, Habas R, Macdonald BT, He X (2007) SnapShot: Noncanonical Wnt Signaling Pathways. Cell 131: 1378. doi: 10.1016/j.cell.2007.12.011
[34]  Gordon MD, Dionne MS, Schneider DS, Nusse R (2005) WntD is a feedback inhibitor of Dorsal/NF-kappaB in Drosophila development and immunity. Nature 437: 746–749. doi: 10.1038/nature04073
[35]  Liu X, Lu R, Wu S, Zhang YG, Xia Y, et al. (2011) Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells. Inflamm Bowel Dis 18: 418–29. doi: 10.1002/ibd.21788
[36]  Liu X, Wu S, Xia Y, Li XE, Zhou ZD, et al. (2011) Wingless homolog Wnt11 suppresses bacterial invasion and inflammation in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 301: G992–G1003. doi: 10.1152/ajpgi.00080.2011
[37]  Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, et al. (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125: 509–522. doi: 10.1016/j.cell.2006.02.049
[38]  Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125: 523–533. doi: 10.1016/j.cell.2006.04.009
[39]  Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, et al. (2006) Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133: 4901–4911. doi: 10.1242/dev.02674
[40]  Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13: 680–685. doi: 10.1016/s0960-9822(03)00240-9
[41]  Yang P, An H, Liu X, Wen M, Zheng Y, et al. (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat Immunol 11: 487–494. doi: 10.1038/ni.1876
[42]  Trosset JY, Dalvit C, Knapp S, Fasolini M, Veronesi M, et al. (2006) Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 64: 60–67. doi: 10.1002/prot.20955
[43]  Chatel-Chaix L, Melancon P, Racine ME, Baril M, Lamarre D (2011) Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production. J Virol 85: 11022–11037. doi: 10.1128/jvi.00719-11
[44]  Kubo F, Takeichi M, Nakagawa S (2003) Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 130: 587–598. doi: 10.1242/dev.00244
[45]  Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31: 24–31. doi: 10.1016/j.it.2009.09.007
[46]  Bose SK, Meyer K, Di Bisceglie AM, Ray RB, Ray R (2012) Hepatitis C Virus Induces Epithelial Mesenchymal Transition in Primary Human Hepatocytes. J Virol 86: 13621–8. doi: 10.1128/jvi.02016-12
[47]  Lei CQ, Zhong B, Zhang Y, Zhang J, Wang S, et al. (2010) Glycogen synthase kinase 3beta regulates IRF3 transcription factor-mediated antiviral response via activation of the kinase TBK1. Immunity 33: 878–889. doi: 10.1016/j.immuni.2010.11.021
[48]  Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6: 777–784. doi: 10.1038/ni1221
[49]  Gao HK, Yin Z, Zhou N, Feng XY, Gao F, et al. (2008) Glycogen synthase kinase 3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol 52: 286–292. doi: 10.1097/fjc.0b013e318186a84d
[50]  Gurrieri C, Piazza F, Gnoato M, Montini B, Biasutto L, et al. (2010) 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), a glycogen synthase kinase-3 inhibitor, displays therapeutic properties in a mouse model of pulmonary inflammation and fibrosis. J Pharmacol Exp Ther 332: 785–794. doi: 10.1124/jpet.109.153049
[51]  Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, et al. (2003) Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor kappaB signaling. Mol Cell Biol 23: 4649–4662. doi: 10.1128/mcb.23.13.4649-4662.2003
[52]  Takada Y, Fang X, Jamaluddin MS, Boyd DD, Aggarwal BB (2004) Genetic deletion of glycogen synthase kinase-3beta abrogates activation of IkappaBalpha kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor. J Biol Chem 279: 39541–39554. doi: 10.1074/jbc.m403449200
[53]  Yuskaitis CJ, Jope RS (2009) Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal 21: 264–273. doi: 10.1016/j.cellsig.2008.10.014
[54]  Deng J, Xia W, Miller SA, Wen Y, Wang HY, et al. (2004) Crossregulation of NF-kappaB by the APC/GSK-3beta/beta-catenin pathway. Mol Carcinog 39: 139–146. doi: 10.1002/mc.10169
[55]  Die L, Yan P, Jun Jiang Z, Min Hua T, Cai W, et al. (2012) Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol Immunol 52: 38–49. doi: 10.1016/j.molimm.2012.04.005
[56]  Duan Y, Liao AP, Kuppireddi S, Ye Z, Ciancio MJ, et al. (2007) beta-Catenin activity negatively regulates bacteria-induced inflammation. Lab Invest 87: 613–624. doi: 10.1038/labinvest.3700545
[57]  Ke B, Shen XD, Kamo N, Ji H, Yue S, et al. (2012) beta-Catenin regulates innate and adaptive immunity in mouse liver ischemia-reperfusion injury. Hepatology 57: 1203–14. doi: 10.1002/hep.26100
[58]  Gantner BN, Jin H, Qian F, Hay N, He B, et al. (2012) The Akt1 isoform is required for optimal IFN-beta transcription through direct phosphorylation of beta-catenin. J Immunol 189: 3104–3111. doi: 10.4049/jimmunol.1201669
[59]  Zhu J, Coyne CB, Sarkar SN (2011) PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and beta-catenin. EMBO J 30: 4838–4849. doi: 10.1038/emboj.2011.351
[60]  Suriano AR, Sanford AN, Kim N, Oh M, Kennedy S, et al. (2005) GCF2/LRRFIP1 represses tumor necrosis factor alpha expression. Mol Cell Biol 25: 9073–9081. doi: 10.1128/mcb.25.20.9073-9081.2005
[61]  Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, et al. (2013) RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling. Science 339: 1436–1441. doi: 10.1126/science.1231499
[62]  Neumann J, Schaale K, Farhat K, Endermann T, Ulmer AJ, et al. (2010) Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J 24: 4599–4612. doi: 10.1096/fj.10-160994
[63]  Barton GM, Kagan JC (2009) A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9: 535–542. doi: 10.1038/nri2587
[64]  Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, et al. (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11: 791–801. doi: 10.1016/j.devcel.2006.10.003
[65]  Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: 448–452. doi: 10.1038/nature01611
[66]  Raymond VA, Selliah S, Ethier C, Houle R, Jouan L, et al. (2009) Primary cultures of human hepatocytes isolated from hepatitis C virus-infected cirrhotic livers as a model to study hepatitis C infection. Liver Int 29: 942–949. doi: 10.1111/j.1478-3231.2009.01996.x
[67]  Baril M, Racine ME, Penin F, Lamarre D (2009) MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease. J Virol 83: 1299–1311. doi: 10.1128/jvi.01659-08
[68]  Berube P, Barbeau B, Cantin R, Sekaly RP, Tremblay M (1996) Repression of human immunodeficiency virus type 1 long terminal repeat-driven gene expression by binding of the virus to its primary cellular receptor, the CD4 molecule. J Virol 70: 4009–4016.
[69]  Lin R, Mamane Y, Hiscott J (2000) Multiple regulatory domains control IRF-7 activity in response to virus infection. J Biol Chem 275: 34320–34327. doi: 10.1074/jbc.m002814200
[70]  Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, et al. (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300: 1148–1151. doi: 10.1126/science.1081315
[71]  Kato T, Matsumura T, Heller T, Saito S, Sapp RK, et al. (2007) Production of infectious hepatitis C virus of various genotypes in cell cultures. J Virol 81: 4405–4411. doi: 10.1128/jvi.02334-06
[72]  Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM (2007) Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81: 8374–8383. doi: 10.1128/jvi.00690-07
[73]  Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72: 8463–8471.
[74]  Keskinen P, Nyqvist M, Sareneva T, Pirhonen J, Melen K, et al. (1999) Impaired antiviral response in human hepatoma cells. Virology 263: 364–375. doi: 10.1006/viro.1999.9983
[75]  Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485. doi: 10.1038/nature09907

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133