Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.
References
[1]
Poynard T, Yuen MF, Ratziu V, Lai CL (2003) Viral hepatitis C. Lancet 362: 2095–2100. doi: 10.1016/s0140-6736(03)15109-4
[2]
Weiss RA, McMichael AJ (2004) Social and environmental risk factors in the emergence of infectious diseases. Nat Med 10: S70–76. doi: 10.1038/nm1150
[3]
Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45: 529–538. doi: 10.1016/j.jhep.2006.05.013
[4]
Brown RS (2005) Hepatitis C and liver transplantation. Nature 436: 973–978. doi: 10.1038/nature04083
[5]
Marcellin P (2009) Hepatitis B and hepatitis C in 2009. Liver Int 29 (Suppl 1) 1–8. doi: 10.1111/j.1478-3231.2008.01947.x
[6]
Hanafiah KM, Groeger J, Flaxman AD, Wiersma ST (2012) Global epidemiology of hepatitis C virus infection: New estimates of age-specific antibody to hepatitis C virus seroprevalence. Hepatology 57 (4) 1333–42. doi: 10.1002/hep.26141
[7]
McHutchison JG, Everson GT, Gordon SC, Jacobson IM, Sulkowski M, et al. (2009) Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 360: 1827–1838. doi: 10.1056/nejmoa0806104
[8]
Sherman KE, Flamm SL, Afdhal NH, Nelson DR, Sulkowski MS, et al. (2011) Response-guided telaprevir combination treatment for hepatitis C virus infection. N Engl J Med 365: 1014–1024. doi: 10.1056/nejmoa1014463
[9]
Tan SL, Pause A, Shi Y, Sonenberg N (2002) Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov 1: 867–881. doi: 10.1038/nrd937
[10]
Lang K, Weiner DB (2008) Immunotherapy for HCV infection: next steps. Expert Rev Vaccines 7: 915–923. doi: 10.1586/14760584.7.7.915
[11]
Biomedical CotUoCi, Research B, Council NR (2011) Chimpanzees in Biomedical and Behavioral Research: Assessing the Necessity; Bruce MA, Diane EP, Marilee KS-D, Jeffrey PK, editors: The National Academies Press.
[12]
Bukh J (2012) Animal models for the study of hepatitis C virus infection and related liver disease. Gastroenterology 142: 1279–1287 e1273. doi: 10.1053/j.gastro.2012.02.016
[13]
McGivern DR, Lemon SM (2011) Model systems for hepatitis C research: the cup half empty? Gastroenterology 141: 806–809. doi: 10.1053/j.gastro.2011.07.028
[14]
Long G, Hiet MS, Windisch MP, Lee JY, Lohmann V, et al. (2011) Mouse hepatic cells support assembly of infectious hepatitis C virus particles. Gastroenterology 141: 1057–1066. doi: 10.1053/j.gastro.2011.06.010
[15]
Frentzen A, Huging K, Bitzegeio J, Friesland M, Haid S, et al. (2011) Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines. PLoS Pathog 7: e1002029. doi: 10.1371/journal.ppat.1002029
[16]
Ploss A, Rice CM (2009) Towards a small animal model for hepatitis C. EMBO Rep 10: 1220–1227. doi: 10.1038/embor.2009.223
[17]
Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, et al. (2011) A genetically humanized mouse model for hepatitis C virus infection. Nature 474: 208–211. doi: 10.1038/nature10168
[18]
Bitzegeio J, Bankwitz D, Hueging K, Haid S, Brohm C, et al. (2010) Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors. PLoS Pathog 6: e1000978. doi: 10.1371/journal.ppat.1000978
[19]
Wu GY, Konishi M, Walton CM, Olive D, Hayashi K, et al. (2005) A novel immunocompetent rat model of HCV infection and hepatitis. Gastroenterology 128: 1416–1423. doi: 10.1053/j.gastro.2005.03.015
[20]
Bukh J, Apgar CL, Govindarajan S, Purcell RH (2001) Host range studies of GB virus-B hepatitis agent, the closest relative of hepatitis C virus, in New World monkeys and chimpanzees. J Med Virol 65: 694–697. doi: 10.1002/jmv.2092
[21]
Bukh J, Apgar CL, Yanagi M (1999) Toward a surrogate model for hepatitis C virus: An infectious molecular clone of the GB virus-B hepatitis agent. Virology 262: 470–478. doi: 10.1006/viro.1999.9941
[22]
Bailey J (2010) An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 38: 387–418.
[23]
Kapoor A, Simmonds P, Gerold G, Qaisar N, Jain K, et al. (2011) Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci U S A 108: 11608–11613. doi: 10.1073/pnas.1101794108
[24]
Burbelo PD, Dubovi EJ, Simmonds P, Medina JL, Henriquez JA, et al. (2012) Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86: 6171–6178. doi: 10.1128/jvi.00250-12
Luis AD, Hayman DTS, O'Shea TJ, Cryan PM, Gilbert AT, et al. (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proceedings of the Royal Society B: Biological Sciences 280. doi: 10.1098/rspb.2012.2753
[27]
Mickleburgh S, Waylen K, P R (2009) Bats as bushmeat: a global review. Oryx 43: 217–234. doi: 10.1017/s0030605308000938
[28]
Plowright RK, Foley P, Field HE, Dobson AP, Foley JE, et al. (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proc Biol Sci 278: 3703–3712. doi: 10.1098/rspb.2011.0522
[29]
Parrish CR, Holmes EC, Morens DM, Park EC, Burke DS, et al. (2008) Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 72: 457–470. doi: 10.1128/mmbr.00004-08
[30]
Mills JN (2006) Biodiversity loss and emerging infectious disease: an example from the rodent-borne hemorrhagic fevers. Biodiversity 7: 9–17. doi: 10.1080/14888386.2006.9712789
[31]
Koch DE, Mohler RL, Goodin DG (2007) Stratifying land use/land cover for spatial analysis of disease ecology and risk: an example using object-based classification techniques. Geospat Health 2: 15–28.
[32]
Jonsson CB, Figueiredo LTM, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clinical microbiology reviews 23: 412–441. doi: 10.1128/cmr.00062-09
[33]
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, et al. (2008) The status of the world's land and marine mammals: diversity, threat, and knowledge. Science 322: 225–230.
[34]
Bukh J (2011) Hepatitis C homolog in dogs with respiratory illness. Proc Natl Acad Sci U S A 108: 12563–12564. doi: 10.1073/pnas.1107612108
[35]
Drexler JF, Kupfer B, Petersen N, Grotto RM, Rodrigues SM, et al. (2009) A novel diagnostic target in the hepatitis C virus genome. PLoS Med 6: e31. doi: 10.1371/journal.pmed.1000031
Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973. doi: 10.1093/molbev/mss075
[38]
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
[39]
Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26: 1372–1373. doi: 10.1093/bioinformatics/btq110
[40]
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415. doi: 10.1093/nar/gkg595
[41]
Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066. doi: 10.1093/nar/gkf436
[42]
Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795. doi: 10.1016/j.jmb.2004.05.028
[43]
Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153–164. doi: 10.1093/glycob/cwh151
[44]
Gupta R, Jung E, Brunak S (2004) Prediction of N-glycosylation sites in human proteins. . Accessed 14/05/2012.
[45]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28 (10) 2731–9. doi: 10.1093/molbev/msr121
[46]
Muller MA, Paweska JT, Leman PA, Drosten C, Grywna K, et al. (2007) Coronavirus antibodies in African bat species. Emerg Infect Dis 13: 1367–1370. doi: 10.3201/eid1309.070342
[47]
Lantez V, Dalle K, Charrel R, Baronti C, Canard B, et al. (2011) Comparative production analysis of three phlebovirus nucleoproteins under denaturing or non-denaturing conditions for crystallographic studies. PLoS Negl Trop Dis 5: e936. doi: 10.1371/journal.pntd.0000936
[48]
Epstein JH, Quan PL, Briese T, Street C, Jabado O, et al. (2010) Identification of GBV-D, a novel GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. PLoS Pathog 6: e1000972. doi: 10.1371/journal.ppat.1000972
[49]
Xu Z, Choi J, Yen TS, Lu W, Strohecker A, et al. (2001) Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. EMBO J 20: 3840–3848. doi: 10.1093/emboj/20.14.3840
[50]
Vassilaki N, Mavromara P (2009) The HCV ARFP/F/core+1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 61: 739–752. doi: 10.1002/iub.201
[51]
Li YP, Gottwein JM, Scheel TK, Jensen TB, Bukh J (2011) MicroRNA-122 antagonism against hepatitis C virus genotypes 1–6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proc Natl Acad Sci U S A 108: 4991–4996. doi: 10.1073/pnas.1016606108
[52]
Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115: 887–903. doi: 10.1083/jcb.115.4.887
[53]
Hansson L (1990) Breeding of captive bank voles (Clethrionomys glareolus) related to dynamics of source populations. J Reprod Fertil 89: 769–772. doi: 10.1530/jrf.0.0890769
[54]
Hughes DJ, Kipar A, Leeming G, Sample JT, Stewart JP (2012) Experimental infection of laboratory-bred bank voles (Myodes glareolus) with murid herpesvirus 4. Arch Virol 157: 2207–2212. doi: 10.1007/s00705-012-1397-5
[55]
Hardestam J, Karlsson M, Falk KI, Olsson G, Klingstrom J, et al. (2008) Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg Infect Dis 14: 1209–1215. doi: 10.3201/eid1408.080221
[56]
Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, et al. (1996) Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219: 357–366. doi: 10.1006/viro.1996.0261
[57]
Wu Z, Ren X, Yang L, Hu Y, Yang J, et al. (2012) Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol 86: 10999–11012. doi: 10.1128/jvi.01394-12
[58]
Kirkland PD, Frost MJ, Finlaison DS, King KR, Ridpath JF, et al. (2007) Identification of a novel virus in pigs–Bungowannah virus: a possible new species of pestivirus. Virus Res 129: 26–34. doi: 10.1016/j.virusres.2007.05.002
[59]
de Lamballerie X, Crochu S, Billoir F, Neyts J, de Micco P, et al. (2002) Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. J Gen Virol 83: 2443–2454.
[60]
Kapoor A, Victoria J, Simmonds P, Slikas E, Chieochansin T, et al. (2008) A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci U S A 105: 20482–20487. doi: 10.1073/pnas.0807979105
[61]
Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P (2011) The GB viruses: a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae. J Gen Virol 92: 233–246. doi: 10.1099/vir.0.027490-0
[62]
International Committee on Taxonomy of Viruses., King A, Adams M, Carstens EB, Lefkowitz EJ, et al. (2012) Virus taxonomy : classification and nomenclature of viruses : ninth report of the International Committee on Taxonomy of Viruses. Amsterdam ; Boston: Elsevier/Academic Press. viii, 1259 p. p.
[63]
Thurner C, Witwer C, Hofacker IL, Stadler PF (2004) Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85: 1113–1124. doi: 10.1099/vir.0.19462-0
[64]
Hellen CU, de Breyne S (2007) A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol 81: 5850–5863. doi: 10.1128/jvi.02403-06
[65]
Willcocks MM, Locker N, Gomwalk Z, Royall E, Bakhshesh M, et al. (2011) Structural features of the Seneca Valley virus internal ribosome entry site (IRES) element: a picornavirus with a pestivirus-like IRES. J Virol 85: 4452–4461. doi: 10.1128/jvi.01107-10
Simmonds P, Bukh J, Combet C, Deleage G, Enomoto N, et al. (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42: 962–973. doi: 10.1002/hep.20819
[68]
Bukh J, Apgar CL (1997) Five new or recently discovered (GBV-A) virus species are indigenous to New World monkeys and may constitute a separate genus of the Flaviviridae. Virology 229: 429–436. doi: 10.1006/viro.1997.8461
[69]
Lyons S, Kapoor A, Sharp C, Schneider B, Wolfe N, et al. (2012) Nonprimate hepaciviruses in domestic horses, United Kingdom. Emerg Infect Dis [Internet] Dec [08 Nov 2012] : .
[70]
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19: 531–545. doi: 10.1128/cmr.00017-06
[71]
Wu S, Wu W, Zhang F, Ye J, Ni X, et al. (2012) Molecular and paleontological evidence for a post-Cretaceous origin of rodents. PLoS ONE 7: e46445. doi: 10.1371/journal.pone.0046445
[72]
Spitzenberger F (1999) Clethrionomys glareolus. In: Mitchell-Jones AJ, editor. The atlas of European mammals. London: T & AD Poyser. pp. xi, 484 p.
Ratterree MS, Gutierrez RA, Travassos da Rosa AP, Dille BJ, Beasley DW, et al. (2004) Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J Infect Dis 189: 669–676. doi: 10.1086/381461
[75]
Sandvik T, Fredriksen B, Loken T (1997) Level of viral antigen in blood leucocytes from cattle acutely infected with bovine viral diarrhoea virus. Zentralbl Veterinarmed B 44: 583–590. doi: 10.1111/j.1439-0450.1997.tb01011.x
[76]
Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, et al. (2007) The delayed rise of present-day mammals. Nature 446: 507–512. doi: 10.1038/nature05634
[77]
Friebe P, Bartenschlager R (2002) Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76: 5326–5338. doi: 10.1128/jvi.76.11.5326-5338.2002
[78]
Rijnbrand R, Abell G, Lemon SM (2000) Mutational analysis of the GB virus B internal ribosome entry site. J Virol 74: 773–783. doi: 10.1128/jvi.74.2.773-783.2000
[79]
Imberti L, Cariani E, Bettinardi A, Zonaro A, Albertini A, et al. (1991) An immunoassay for specific amplified HCV sequences. J Virol Methods 34: 233–243. doi: 10.1016/0166-0934(91)90103-7
[80]
Laperche S, Lunel F, Izopet J, Alain S, Deny P, et al. (2005) Comparison of hepatitis C virus NS5b and 5′ noncoding gene sequencing methods in a multicenter study. J Clin Microbiol 43: 733–739. doi: 10.1128/jcm.43.2.733-739.2005
[81]
Murphy DG, Willems B, Deschenes M, Hilzenrat N, Mousseau R, et al. (2007) Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus with reference to C/E1 and 5′ untranslated region sequences. J Clin Microbiol 45: 1102–1112. doi: 10.1128/jcm.02366-06
[82]
Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, et al. (2007) A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis 7: 467–477. doi: 10.1089/vbz.2007.0206