全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dissection of Antibody Specificities Induced by Yellow Fever Vaccination

DOI: 10.1371/journal.ppat.1003458

Full-Text   Cite this paper   Add to My Lib

Abstract:

The live attenuated yellow fever (YF) vaccine has an excellent record of efficacy and one dose provides long-lasting immunity, which in many cases may last a lifetime. Vaccination stimulates strong innate and adaptive immune responses, and neutralizing antibodies are considered to be the major effectors that correlate with protection from disease. Similar to other flaviviruses, such antibodies are primarily induced by the viral envelope protein E, which consists of three distinct domains (DI, II, and III) and is presented at the surface of mature flavivirions in an icosahedral arrangement. In general, the dominance and individual variation of antibodies to different domains of viral surface proteins and their impact on neutralizing activity are aspects of humoral immunity that are not well understood. To gain insight into these phenomena, we established a platform of immunoassays using recombinant proteins and protein domains that allowed us to dissect and quantify fine specificities of the polyclonal antibody response after YF vaccination in a panel of 51 vaccinees as well as determine their contribution to virus neutralization by serum depletion analyses. Our data revealed a high degree of individual variation in antibody specificities present in post-vaccination sera and differences in the contribution of different antibody subsets to virus neutralization. Irrespective of individual variation, a substantial proportion of neutralizing activity appeared to be due to antibodies directed to complex quaternary epitopes displayed on the virion surface only but not on monomeric E. On the other hand, DIII-specific antibodies (presumed to have the highest neutralizing activity) as well as broadly flavivirus cross-reactive antibodies were absent or present at very low titers. These data provide new information on the fine specificity as well as variability of antibody responses after YF vaccination that are consistent with a strong influence of individual-specific factors on immunodominance in humoral immune responses.

References

[1]  Barrett AD, Teuwen DE (2009) Yellow fever vaccine - how does it work and why do rare cases of serious adverse events take place? Curr Opin Immunol 21: 308–313. doi: 10.1016/j.coi.2009.05.018
[2]  Monath TP, Gershman M, Staples JE, Barrett AD (2012) Yellow fever vaccine. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines: Saunders Elsevier. pp. 870–968.
[3]  Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, et al. (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10: 116–125. doi: 10.1038/ni.1688
[4]  Pulendran B (2009) Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol 9: 741–747. doi: 10.1038/nri2629
[5]  Querec TD, Pulendran B (2007) Understanding the role of innate immunity in the mechanism of action of the live attenuated Yellow Fever Vaccine 17D. Adv Exp Med Biol 590: 43–53. doi: 10.1007/978-0-387-34814-8_3
[6]  Simmonds P, Becher P, Collett MS, Gould EA, Heinz FX, et al.. (2011) Family Flaviviridae. In: King AMQ, Lefkowitz E, Adams MJ, Carstens EB, editors. Virus Taxonomy IXth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press.
[7]  Kaufmann B, Rossmann MG (2011) Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect 13: 1–9. doi: 10.1016/j.micinf.2010.09.005
[8]  Heinz FX, Stiasny K (2012) Flaviviruses and their antigenic structure. J Clin Virol 55: 289–295. doi: 10.1016/j.jcv.2012.08.024
[9]  Lindenbach BD, Thiel HJ, Rice CM (2007) Flaviviridae: The viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA et al.., editors. Fields Virology. 5 ed. Philadelphia: Lippincott. Williams & Wilkins. pp. 1101–1152.
[10]  Stadler K, Allison SL, Schalich J, Heinz FX (1997) Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71: 8475–8481.
[11]  Mukhopadhyay S, Kim BS, Chipman PR, Rossmann MG, Kuhn RJ (2003) Structure of West Nile virus. Science 302: 248. doi: 10.1126/science.1089316
[12]  Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, et al. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108: 717–725. doi: 10.1016/s0092-8674(02)00660-8
[13]  Stiasny K, Fritz R, Pangerl K, Heinz FX (2011) Molecular mechanisms of flavivirus membrane fusion. Amino Acids 41: 1159–1163. doi: 10.1007/s00726-009-0370-4
[14]  Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, et al. (2010) Cross-reacting antibodies enhance dengue virus infection in humans. Science 328: 745–748. doi: 10.1126/science.1185181
[15]  Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, et al. (2010) The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8: 271–283. doi: 10.1016/j.chom.2010.08.007
[16]  Pierson TC, Diamond MS (2012) Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2: 168–175. doi: 10.1016/j.coviro.2012.02.011
[17]  Pierson TC, Fremont DH, Kuhn RJ, Diamond MS (2008) Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4: 229–238. doi: 10.1016/j.chom.2008.08.004
[18]  Stiasny K, Kiermayr S, Holzmann H, Heinz FX (2006) Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80: 9557–9568. doi: 10.1128/jvi.00080-06
[19]  Crill WD, Chang GJ (2004) Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 78: 13975–13986. doi: 10.1128/jvi.78.24.13975-13986.2004
[20]  Vogt MR, Dowd KA, Engle M, Tesh RB, Johnson S, et al. (2011) Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcgamma receptor and complement-dependent effector mechanisms. J Virol 85: 11567–11580. doi: 10.1128/jvi.05859-11
[21]  Binley J (2009) Specificities of broadly neutralizing anti-HIV-1 sera. Curr Opin HIV AIDS 4: 364–372. doi: 10.1097/coh.0b013e32832e06fe
[22]  Li Y, Svehla K, Louder MK, Wycuff D, Phogat S, et al. (2009) Analysis of neutralization specificities in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J Virol 83: 1045–1059. doi: 10.1128/jvi.01992-08
[23]  Pinna D, Corti D, Jarrossay D, Sallusto F, Lanzavecchia A (2009) Clonal dissection of the human memory B-cell repertoire following infection and vaccination. Eur J Immunol 39: 1260–1270. doi: 10.1002/eji.200839129
[24]  Han T, Marasco WA (2011) Structural basis of influenza virus neutralization. Ann N Y Acad Sci 1217: 178–190. doi: 10.1111/j.1749-6632.2010.05829.x
[25]  Karlsson Hedestam GB, Fouchier RA, Phogat S, Burton DR, Sodroski J, et al. (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6: 143–155. doi: 10.1038/nrmicro1819
[26]  Crill WD, Hughes HR, Delorey MJ, Chang GJ (2009) Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One 4: e4991. doi: 10.1371/journal.pone.0004991
[27]  Oliphant T, Nybakken GE, Austin SK, Xu Q, Bramson J, et al. (2007) Induction of epitope-specific neutralizing antibodies against West Nile virus. J Virol 81: 11828–11839. doi: 10.1128/jvi.00643-07
[28]  Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, et al. (2008) Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82: 6631–6643. doi: 10.1128/jvi.00316-08
[29]  Heinz FX (1986) Epitope mapping of flavivirus glycoproteins. Adv Virus Res 31: 103–168. doi: 10.1016/s0065-3527(08)60263-8
[30]  Heinz FX, Mandl C, Berger R, Tuma W, Kunz C (1984) Antibody-induced conformational changes result in enhanced avidity of antibodies to different antigenic sites on the tick-borne encephalitis virus glycoprotein. Virology 133: 25–34. doi: 10.1016/0042-6822(84)90422-7
[31]  Verrier F, Nadas A, Gorny MK, Zolla-Pazner S (2001) Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6. J Virol 75: 9177–9186. doi: 10.1128/jvi.75.19.9177-9186.2001
[32]  Ndifon W, Wingreen NS, Levin SA (2009) Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines. Proc Natl Acad Sci U S A 106: 8701–8706. doi: 10.1073/pnas.0903427106
[33]  Lok SM, Kostyuchenko V, Nybakken GE, Holdaway HA, Battisti AJ, et al. (2008) Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 15: 312–317. doi: 10.1038/nsmb.1382
[34]  Dowd KA, Jost CA, Durbin AP, Whitehead SS, Pierson TC (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog 7: e1002111. doi: 10.1371/journal.ppat.1002111
[35]  Cockburn JJ, Navarro Sanchez ME, Fretes N, Urvoas A, Staropoli I, et al. (2012) Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody. Structure 20: 303–314. doi: 10.1016/j.str.2012.01.001
[36]  Pierson TC, Kuhn RJ (2012) Capturing a Virus while It Catches Its Breath. Structure 20: 200–202. doi: 10.1016/j.str.2012.01.014
[37]  Midgley CM, Flanagan A, Tran HB, Dejnirattisai W, Chawansuntati K, et al. (2012) Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity. J Immunol 188: 4971–4979. doi: 10.4049/jimmunol.1200227
[38]  Austin SK, Dowd KA, Shrestha B, Nelson CA, Edeling MA, et al. (2012) Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope. PLoS Pathog 8: e1002930. doi: 10.1371/journal.ppat.1002930
[39]  Wahala WM, Donaldson EF, de Alwis R, Accavitti-Loper MA, Baric RS, et al. (2010) Natural strain variation and antibody neutralization of dengue serotype 3 viruses. PLoS Pathog 6: e1000821. doi: 10.1371/journal.ppat.1000821
[40]  Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, et al. (2010) Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84: 9227–9239. doi: 10.1128/jvi.01087-10
[41]  Brien JD, Austin SK, Sukupolvi-Petty S, O'Brien KM, Johnson S, et al. (2010) Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J Virol 84: 10630–10643. doi: 10.1128/jvi.01190-10
[42]  Nelson S, Jost CA, Xu Q, Ess J, Martin JE, et al. (2008) Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog 4: e1000060. doi: 10.1371/journal.ppat.1000060
[43]  Daffis S, Kontermann RE, Korimbocus J, Zeller H, Klenk HD, et al. (2005) Antibody responses against wild-type yellow fever virus and the 17D vaccine strain: characterization with human monoclonal antibody fragments and neutralization escape variants. Virology 337: 262–272. doi: 10.1016/j.virol.2005.04.031
[44]  Kaufmann B, Vogt MR, Goudsmit J, Holdaway HA, Aksyuk AA, et al. (2010) Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc Natl Acad Sci U S A 107: 18950–18955. doi: 10.1073/pnas.1011036107
[45]  Throsby M, Geuijen C, Goudsmit J, Bakker AQ, Korimbocus J, et al. (2006) Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J Virol 80: 6982–6992. doi: 10.1128/jvi.00551-06
[46]  Vogt MR, Moesker B, Goudsmit J, Jongeneelen M, Austin SK, et al. (2009) Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J Virol 83: 6494–6507. doi: 10.1128/jvi.00286-09
[47]  Goncalvez AP, Purcell RH, Lai CJ (2004) Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. J Virol 78: 12919–12928. doi: 10.1128/jvi.78.23.12919-12928.2004
[48]  de Alwis R, Smith SA, Olivarez NP, Messer WB, Huynh JP, et al. (2012) Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc Natl Acad Sci U S A 109: 7439–7444. doi: 10.1073/pnas.1200566109
[49]  Zlatkovic J, Stiasny K, Heinz FX (2011) Immunodominance and functional activities of antibody responses to inactivated West Nile virus and recombinant subunit vaccines in mice. J Virol 85: 1994–2003. doi: 10.1128/jvi.01886-10
[50]  Wahala WM, Silva AM (2011) The human antibody response to dengue virus infection. Viruses 3: 2374–2395. doi: 10.3390/v3122374
[51]  Wahala WM, Huang C, Butrapet S, White LJ, de Silva AM (2012) Recombinant dengue type 2 viruses with altered e protein domain III epitopes are efficiently neutralized by human immune sera. J Virol 86: 4019–4023. doi: 10.1128/jvi.06871-11
[52]  Wahala WM, Kraus AA, Haymore LB, Accavitti-Loper MA, de Silva AM (2009) Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology 392: 103–113. doi: 10.1016/j.virol.2009.06.037
[53]  Pond WL, Ehrenkranz NJ, Danauskas JX, Carter MJ (1967) Heterotypic serologic responses after yellow fever vaccination; detection of persons with past St. Louis encephalitis or dengue. J Immunol 98: 673–682.
[54]  Kayser M, Klein H, Paasch I, Pilaski J, Blenk H, et al. (1985) Human antibody response to immunization with 17D yellow fever and inactivated TBE vaccine. J Med Virol 17: 35–45. doi: 10.1002/jmv.1890170106
[55]  Cherrier MV, Kaufmann B, Nybakken GE, Lok SM, Warren JT, et al. (2009) Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28: 3269–3276. doi: 10.1038/emboj.2009.245
[56]  Cardosa MJ, Wang SM, Sum MS, Tio PH (2002) Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. BMC Microbiol 2: 9.
[57]  de Alwis R, Beltramello M, Messer WB, Sukupolvi-Petty S, Wahala WM, et al. (2011) In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis 5: e1188. doi: 10.1371/journal.pntd.0001188
[58]  Dormitzer PR, Grandi G, Rappuoli R (2012) Structural vaccinology starts to deliver. Nat Rev Microbiol 10: 807–813. doi: 10.1038/nrmicro2893
[59]  Heinz FX, Kunz C (1981) Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: comparison with other flaviviruses. J Gen Virol 57: 263–274. doi: 10.1099/0022-1317-57-2-263
[60]  Clarke DH, Casals J (1958) Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am J Trop Med Hyg 7: 561–573.
[61]  Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, et al. (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319: 1830–1834. doi: 10.1126/science.1153263

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133