全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Galectin-9 and IL-21 Mediate Cross-regulation between Th17 and Treg Cells during Acute Hepatitis C

DOI: 10.1371/journal.ppat.1003422

Full-Text   Cite this paper   Add to My Lib

Abstract:

Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3high HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.

References

[1]  Rehermann B (2009) Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 119: 1745–1754. doi: 10.1172/jci39133
[2]  Bowen DG, Walker CM (2005) Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436: 946–952. doi: 10.1038/nature04079
[3]  Gerlach JT, Diepolder HM, Jung MC, Gruener NH, Schraut WW, et al. (1999) Recurrence of hepatitis C virus after loss of virus-specific CD4(+) T-cell response in acute hepatitis C. Gastroenterology 117: 933–941. doi: 10.1016/s0016-5085(99)70353-7
[4]  Diepolder HM, Zachoval R, Hoffmann RM, Wierenga EA, Santantonio T, et al. (1995) Possible mechanism involving T-lymphocyte response to non-structural protein 3 in viral clearance in acute hepatitis C virus infection. Lancet 346: 1006–1007. doi: 10.1016/s0140-6736(95)91691-1
[5]  Day CL, Lauer GM, Robbins GK, McGovern B, Wurcel AG, et al. (2002) Broad Specificity of Virus-Specific CD4(+) T-Helper-Cell Responses in Resolved Hepatitis C Virus Infection. J Virol 76: 12584–12595. doi: 10.1128/jvi.76.24.12584-12595.2002
[6]  Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, Kasprowicz V, Nolan BE, et al. (2012) Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. J Exp Med 209: 61–75. doi: 10.1084/jem.20100388
[7]  Semmo N, Day CL, Ward SM, Lucas M, Harcourt G, et al. (2005) Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology 41: 1019–1028. doi: 10.1002/hep.20669
[8]  Lucas M, Ulsenheimer A, Pfafferot K, Heeg MH, Gaudieri S, et al. (2007) Tracking virus-specific CD4+ T cells during and after acute hepatitis C virus infection. PLoS ONE 2: e649. doi: 10.1371/journal.pone.0000649
[9]  Grakoui A, Shoukry NH, Woollard DJ, Han JH, Hanson HL, et al. (2003) HCV persistence and immune evasion in the absence of memory T cell help. Science 302: 659–662. doi: 10.1126/science.1088774
[10]  Callendret B, Walker C (2011) A siege of hepatitis: immune boost for viral hepatitis. Nat Med 17: 252–253. doi: 10.1038/nm0311-252
[11]  Radziewicz H, Ibegbu CC, Hon H, Osborn MK, Obideen K, et al. (2008) Impaired hepatitis C virus (HCV)-specific effector CD8+ T cells undergo massive apoptosis in the peripheral blood during acute HCV infection and in the liver during the chronic phase of infection. J Virol 82: 9808–9822. doi: 10.1128/jvi.01075-08
[12]  Radziewicz H, Dunham RM, Grakoui A (2009) PD-1 tempers Tregs in chronic HCV infection. J Clin Invest 119: 450–453. doi: 10.1172/jci38661
[13]  Nakamoto N, Cho H, Shaked A, Olthoff K, Valiga ME, et al. (2009) Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 5: e1000313. doi: 10.1371/journal.ppat.1000313
[14]  Nakamoto N, Kaplan DE, Coleclough J, Li Y, Valiga ME, et al. (2008) Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 134: 1927–1922, 1927-1937, 1937, e1921-1922. doi: 10.1053/j.gastro.2008.02.033
[15]  Mengshol JA, Golden-Mason L, Arikawa T, Smith M, Niki T, et al. (2010) A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS ONE 5: e9504. doi: 10.1371/journal.pone.0009504
[16]  Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, et al. (2009) Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol 83: 9122–9130. doi: 10.1128/jvi.00639-09
[17]  Raziorrouh B, Ulsenheimer A, Schraut W, Heeg M, Kurktschiev P, et al. (2011) Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. Gastroenterology 141: 1422–1426, 1422-1431, 1431, e1421-1426. doi: 10.1053/j.gastro.2011.07.004
[18]  Chang KM (2007) Regulatory T cells in hepatitis C virus infection. Hepatol Res 37 Suppl 3: S327–330. doi: 10.1111/j.1872-034x.2007.00220.x
[19]  Manigold T, Racanelli V (2007) T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect Dis 7: 804–813. doi: 10.1016/s1473-3099(07)70289-x
[20]  Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, et al. (2011) Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nat Med 17: 989–995. doi: 10.1038/nm.2422
[21]  Billerbeck E, Kang YH, Walker L, Lockstone H, Grafmueller S, et al. (2010) Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci U S A 107: 3006–3011. doi: 10.1073/pnas.0914839107
[22]  Grafmueller S, Billerbeck E, Blum HE, Neumann-Haefelin C, Thimme R (2012) Differential antigen specificity of hepatitis C virus-specific interleukin 17- and interferon gamma-producing CD8(+) T cells during chronic infection. J Infect Dis 205: 1142–1146. doi: 10.1093/infdis/jis018
[23]  Foster RG, Golden-Mason L, Rutebemberwa A, Rosen HR (2012) Interleukin (IL)-17/IL-22-producing T cells enriched within the liver of patients with chronic hepatitis C viral (HCV) infection. Dig Dis Sci 57: 381–389. doi: 10.1007/s10620-011-1997-z
[24]  Rowan AG, Fletcher JM, Ryan EJ, Moran B, Hegarty JE, et al. (2008) Hepatitis C virus-specific Th17 cells are suppressed by virus-induced TGF-beta. J Immunol 181: 4485–4494. doi: 10.4049/jimmunol.181.7.4485
[25]  Seetharam AB, Borg BB, Subramanian V, Chapman WC, Crippin JS, et al. (2011) Temporal association between increased virus-specific Th17 response and spontaneous recovery from recurrent hepatitis C in a liver transplant recipient. Transplantation 92: 1364–1370. doi: 10.1097/tp.0b013e31823817f5
[26]  Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27: 485–517. doi: 10.1146/annurev.immunol.021908.132710
[27]  Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, et al. (2009) IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324: 1576–1580. doi: 10.1126/science.1172815
[28]  Elsaesser H, Sauer K, Brooks DG (2009) IL-21 is required to control chronic viral infection. Science 324: 1569–1572. doi: 10.1126/science.1174182
[29]  Yi JS, Du M, Zajac AJ (2009) A vital role for interleukin-21 in the control of a chronic viral infection. Science 324: 1572–1576. doi: 10.1126/science.1175194
[30]  Chevalier MF, Julg B, Pyo A, Flanders M, Ranasinghe S, et al. (2011) HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J Virol 85: 733–741. doi: 10.1128/jvi.02030-10
[31]  Iannello A, Boulassel MR, Samarani S, Debbeche O, Tremblay C, et al. (2010) Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study. J Immunol 184: 114–126. doi: 10.4049/jimmunol.0901967
[32]  Yue FY, Lo C, Sakhdari A, Lee EY, Kovacs CM, et al. (2010) HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control. J Immunol 185: 498–506. doi: 10.4049/jimmunol.0903915
[33]  Diepolder HM, Gerlach JT, Zachoval R, Hoffmann RM, Jung MC, et al. (1997) Immunodominant CD4+ T-cell epitope within nonstructural protein 3 in acute hepatitis C virus infection. J Virol 71: 6011–6019.
[34]  Lauer GM, Barnes E, Lucas M, Timm J, Ouchi K, et al. (2004) High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 127: 924–936. doi: 10.1053/j.gastro.2004.06.015
[35]  Schulze zur Wiesch J, Lauer GM, Day CL, Kim AY, Ouchi K, et al. (2005) Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes. J Immunol 175: 3603–3613. doi: 10.4049/jimmunol.175.6.3603
[36]  Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, et al. (2008) Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med 205: 1903–1916. doi: 10.1084/jem.20080397
[37]  Bengsch B, Seigel B, Flecken T, Wolanski J, Blum HE, et al. (2012) Human Th17 Cells Express High Levels of Enzymatically Active Dipeptidylpeptidase IV (CD26). J Immunol 188: 5438–5447. doi: 10.4049/jimmunol.1103801
[38]  Bengsch B, Seigel B, Ruhl M, Timm J, Kuntz M, et al. (2010) Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog 6: e1000947. doi: 10.1371/journal.ppat.1000947
[39]  McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M, et al. (2010) Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120: 4546–4557. doi: 10.1172/jci43127
[40]  Badr G, Bedard N, Abdel-Hakeem MS, Trautmann L, Willems B, et al. (2008) Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. J Virol 82: 10017–10031. doi: 10.1128/jvi.01083-08
[41]  Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, et al. (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6: 1245–1252. doi: 10.1038/ni1271
[42]  Leitner J, Rieger A, Pickl WF, Zlabinger G, Grabmeier-Pfistershammer K, et al. (2013) TIM-3 Does Not Act as a Receptor for Galectin-9. PLoS Pathog 9: e1003253. doi: 10.1371/journal.ppat.1003253
[43]  Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, et al. (2009) CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 183: 7602–7610. doi: 10.4049/jimmunol.0901881
[44]  Favre D, Lederer S, Kanwar B, Ma ZM, Proll S, et al. (2009) Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog 5: e1000295. doi: 10.1371/journal.ppat.1000295
[45]  White L, Krishnan S, Strbo N, Liu H, Kolber MA, et al. (2007) Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood 109: 3873–3880. doi: 10.1182/blood-2006-09-045278
[46]  Parmigiani A, Pallin MF, Schmidtmayerova H, Lichtenheld MG, Pahwa S (2011) Interleukin-21 and cellular activation concurrently induce potent cytotoxic function and promote antiviral activity in human CD8 T cells. Hum Immunol 72: 115–123. doi: 10.1016/j.humimm.2010.10.015
[47]  Spolski R, Leonard WJ (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26: 57–79. doi: 10.1146/annurev.immunol.26.021607.090316
[48]  Hogg AE, Bowick GC, Herzog NK, Cloyd MW, Endsley JJ (2009) Induction of granulysin in CD8+ T cells by IL-21 and IL-15 is suppressed by human immunodeficiency virus-1. J Leukoc Biol 86: 1191–1203. doi: 10.1189/jlb.0409222
[49]  Allard EL, Hardy MP, Leignadier J, Marquis M, Rooney J, et al. (2007) Overexpression of IL-21 promotes massive CD8+ memory T cell accumulation. Eur J Immunol 37: 3069–3077. doi: 10.1002/eji.200637017
[50]  Sabbagh L, Kaech SM, Bourbonniere M, Woo M, Cohen LY, et al. (2004) The selective increase in caspase-3 expression in effector but not memory T cells allows susceptibility to apoptosis. J Immunol 173: 5425–5433. doi: 10.4049/jimmunol.173.9.5425
[51]  Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, et al. (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8: 967–974. doi: 10.1038/ni1488
[52]  Korn T, Bettelli E, Gao W, Awasthi A, Jager A, et al. (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487. doi: 10.1038/nature05970
[53]  Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, et al. (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448: 480–483. doi: 10.1038/nature05969
[54]  Li Y, Yee C (2008) IL-21 mediated Foxp3 suppression leads to enhanced generation of antigen-specific CD8+ cytotoxic T lymphocytes. Blood 111: 229–235. doi: 10.1182/blood-2007-05-089375
[55]  Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140: 845–858. doi: 10.1016/j.cell.2010.02.021
[56]  Attridge K, Wang CJ, Wardzinski L, Kenefeck R, Chamberlain JL, et al. (2012) IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119: 4656–4664. doi: 10.1182/blood-2011-10-388546
[57]  Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, et al. (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18 ((9)): 1394–400. doi: 10.1038/nm.2871
[58]  Ge J, Wang K, Meng QH, Qi ZX, Meng FL, et al. (2010) Implication of Th17 and Th1 cells in patients with chronic active hepatitis B. J Clin Immunol 30: 60–67. doi: 10.1007/s10875-009-9328-2
[59]  Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, et al. (2010) Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51: 81–91. doi: 10.1002/hep.23273
[60]  Northfield JW, Kasprowicz V, Lucas M, Kersting N, Bengsch B, et al. (2008) CD161 expression on hepatitis C virus-specific CD8+ T cells suggests a distinct pathway of T cell differentiation. Hepatology 47: 396–406. doi: 10.1002/hep.22040
[61]  Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, et al. (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10: 29–37. doi: 10.1038/ni.1679
[62]  Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, et al. (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27: 670–684. doi: 10.1016/j.immuni.2007.09.006
[63]  Schlaphoff V, Lunemann S, Suneetha PV, Jaroszewicz J, Grabowski J, et al. (2011) Dual function of the NK cell receptor 2B4 (CD244) in the regulation of HCV-specific CD8+ T cells. PLoS Pathog 7: e1002045. doi: 10.1371/journal.ppat.1002045
[64]  Neumann-Haefelin C, McKiernan S, Ward S, Viazov S, Spangenberg HC, et al. (2006) Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 43: 563–572. doi: 10.1002/hep.21049
[65]  Dazert E, Neumann-Haefelin C, Bressanelli S, Fitzmaurice K, Kort J, et al. (2009) Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J Clin Invest 119: 376–386. doi: 10.1172/jci36587
[66]  Porichis F, Kwon DS, Zupkosky J, Tighe DP, McMullen A, et al. (2011) Responsiveness of HIV-specific CD4 T cells to PD-1 blockade. Blood 118: 965–974. doi: 10.1182/blood-2010-12-328070
[67]  Schulze Zur Wiesch J, Thomssen A, Hartjen P, Toth I, Lehmann C, et al. (2011) Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+ T regulatory cells correlates with progressive disease. J Virol 85: 1287–1297. doi: 10.1128/jvi.01758-10
[68]  Tang Y, Jiang L, Zheng Y, Ni B, Wu Y (2012) Expression of CD39 on FoxP3+ T regulatory cells correlates with progression of HBV infection. BMC Immunol 13: 17. doi: 10.1186/1471-2172-13-17
[69]  Peelen E, Damoiseaux J, Smolders J, Knippenberg S, Menheere P, et al. (2011) Th17 expansion in MS patients is counterbalanced by an expanded CD39+ regulatory T cell population during remission but not during relapse. J Neuroimmunol 240–241: 97–103. doi: 10.1016/j.jneuroim.2011.09.013
[70]  Nikolova M, Carriere M, Jenabian MA, Limou S, Younas M, et al. (2011) CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog 7: e1002110. doi: 10.1371/journal.ppat.1002110
[71]  Jonuleit H, Schmitt E, Kakirman H, Stassen M, Knop J, et al. (2002) Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells. J Exp Med 196: 255–260. doi: 10.1084/jem.20020394
[72]  Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238. doi: 10.1038/nature04753
[73]  Kared H, Adle-Biassette H, Fois E, Masson A, Bach JF, et al. (2006) Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity 25: 823–834. doi: 10.1016/j.immuni.2006.09.008
[74]  Keerthivasan S, Suleiman R, Lawlor R, Roderick J, Bates T, et al. (2011) Notch signaling regulates mouse and human Th17 differentiation. J Immunol 187: 692–701. doi: 10.4049/jimmunol.1003658
[75]  Barnaba V (2010) Hepatitis C virus infection: a “liaison a trois” amongst the virus, the host, and chronic low-level inflammation for human survival. J Hepatol 53: 752–761. doi: 10.1016/j.jhep.2010.06.003
[76]  Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, et al. (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204: 1257–1265. doi: 10.1084/jem.20062512
[77]  Mandapathil M, Hilldorfer B, Szczepanski MJ, Czystowska M, Szajnik M, et al. (2010) Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 285: 7176–7186. doi: 10.1074/jbc.m109.047423
[78]  Cox AL, Page K, Bruneau J, Shoukry NH, Lauer GM, et al. (2009) Rare birds in North America: acute hepatitis C cohorts. Gastroenterology 136: 26–31. doi: 10.1053/j.gastro.2008.11.049
[79]  Younes SA, Yassine-Diab B, Dumont AR, Boulassel MR, Grossman Z, et al. (2003) HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J Exp Med 198: 1909–1922. doi: 10.1084/jem.20031598

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133