全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

DOI: 10.1371/journal.ppat.1003445

Full-Text   Cite this paper   Add to My Lib

Abstract:

In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

References

[1]  Jones JDG, Dangl JL (2006) The plant immune system. Nature 444: 323–329. doi: 10.1038/nature05286
[2]  Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23: 2809–2820. doi: 10.1105/tpc.111.087346
[3]  Netea MG, Quintin J, van der Meer JWM (2011) Trained immunity: a memory for innate host defese. Cell Host & Microbe 9: 355–361. doi: 10.1016/j.chom.2011.04.006
[4]  Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42: 185–209. doi: 10.1146/annurev.phyto.42.040803.140421
[5]  Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11: 443–448. doi: 10.1016/j.pbi.2008.05.005
[6]  Ku? J (1987) Translocated signals for plant immunization. Ann N Y Acad. Sci 494: 221–223. doi: 10.1111/j.1749-6632.1987.tb29529.x
[7]  Zimmerli L, Jakab G, Métraux J-P, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci USA 97: 12920–12925. doi: 10.1073/pnas.230416897
[8]  Hayes MP, Enterline JC, Gerrard TL, Zoon KC (1991) Regulation of interferon production by human monocytes: requirements for priming for lipopolysaccharide-induced production. J Leukoc Biol 50: 176–181.
[9]  Gifford GE, Lohmann-Matthes M-L (1987) Gamma interferon priming of mouse and human macrophages for induction of tumor necrosis factor production by bacterial lipopolysaccharide. J Natl Cancer Inst 78: 121–124.
[10]  Koerner TJ, Adams DO, Hamilton T (1987) Regulation of tumor necrosis factor (TNF) expression: Interferon-γ enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cell Immunol 109: 437–443. doi: 10.1016/0008-8749(87)90326-1
[11]  Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog 3: e26. doi: 10.1371/journal.ppat.0030026
[12]  Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, et al. (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21: 944–953. doi: 10.1105/tpc.108.062158
[13]  Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128: 1046–1056. doi: 10.1104/pp.010744
[14]  Dempsey D'MA, Klessig DF (2012) SOS-too many signals for systemic acquired resistance? Trends Plant Sci 17: 538–545. doi: 10.1016/j.tplants.2012.05.011
[15]  Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324: 89–91. doi: 10.1126/science.1170025
[16]  Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, et al. (1996) Systemic acquired resistance. Plant Cell 8: 1809–1819. doi: 10.2307/3870231
[17]  Zimmerli L, Métraux J-P, Mauch-Mani B (2000) Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinérea. Plant Physiol 126: 517–523. doi: 10.1104/pp.126.2.517
[18]  Prime-A-Plant Group: Conrath, U., (2006) et al. Priming: getting ready for battle. Mol Plant-Microbe Interact 19: 1062–1071. doi: 10.1094/mpmi-19-1062
[19]  Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nature Rev Immunol 12: 89–100. doi: 10.1038/nri3141
[20]  Jaskiewicz M, Conrath U, Peterh?nsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12: 50–55. doi: 10.1038/embor.2010.186
[21]  Mosher RA, Durrant WE, Wang D, Song J, Dong X (2006) A comprehensive structure–function analysis of Arabidopsis SNI1 defines essential regions and transcriptional repressor activity. Plant Cell 18: 1750–1765. doi: 10.1105/tpc.105.039677
[22]  Law JA, Jacobsen SE (2009) Dynamic DNA methylation. Science 323: 1568–1569. doi: 10.1126/science.1172782
[23]  López A, Ramirez V, Garcia-Andrade J, Flors V, Vera P (2011) The RNA Polymerase V Is Required for Plant Immunity. PLoS Genet 7 (12) e1002434. doi: 10.1371/journal.pgen.1002434
[24]  Luna E, Bruce TJA, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158: 844–853. doi: 10.1104/pp.111.187468
[25]  Slaughter A, Daniel X, Flors V, Luna E, Hohn B, et al. (2012) Descendants of primed Arabidopsis plants exhibit enhanced resistance to biotic stress. Plant Physiol 158: 835–843. doi: 10.1104/pp.111.191593
[26]  Gil MJ, Coego A, Mauch-Mani B, Jordá L, Vera P (2005) The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. Plant Journal 44: 155–166. doi: 10.1111/j.1365-313x.2005.02517.x
[27]  Jorda L, Vera P (2000) Local and systemic induction of two defense-related subtilisin-like protease promoters in transgenic Arabidopsis plants. Plant Physiol 124: 1049–1058. doi: 10.1104/pp.124.3.1049
[28]  Rautengarten C, Steinhauser D, Büssis D, Stintzi A, Schaller A, et al. (2005) Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family. PLoS Comput Biol 1 (4) e40. doi: 10.1371/journal.pcbi.0010040
[29]  Jorda L, Coego A, Vera P (1999) A genomic cluster containing four differentially regulated subtilisin-like processing protease genes is in tomato plants. J Biol Chem 274: 2360–2365. doi: 10.1074/jbc.274.4.2360
[30]  Tornero P, Conejero V, Vera P (1996) Primary structure and expression of a pathogen-induced protease (P69) in tomato plants: Similarity of functional domains to subtilisin-like endoproteases. Proc Natl Acad Sci USA 93: 6332–6337. doi: 10.1073/pnas.93.13.6332
[31]  Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3: 61–72. doi: 10.2307/3869200
[32]  Bolwell GP, Daudi A (2009) Reactive oxygen species in plant-pathogen interactions. In LA del Rio, A Puppo, eds, Reactive Oxygen Species in Plant Signaling. Springer-Verlag, Berlin, pp 113–133.
[33]  Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, et al. (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427: 858–861. doi: 10.1038/nature02353
[34]  Schaller A, Stintzi A, Graff L (2012) Subtilases - versatile tools for protein turnover, plant development, and interactions with the environment. Physiol Plant 145: 52–66. doi: 10.1111/j.1399-3054.2011.01529.x
[35]  Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58: 766–777. doi: 10.1111/j.1365-313x.2009.03824.x
[36]  Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, et al. (2010) Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J 29: 1149–1161. doi: 10.1038/emboj.2010.1
[37]  Bykova NV, Rampitsch C, Krokhin O, Standing KG, Ens W (2006) Determination and characterization of site-specific N-glycosylation using MALDI-Qq-TOF tandem mas spectrometry: case study with a plant protease. Anal Chem 78: 1093–1103. doi: 10.1021/ac0512711
[38]  Cedzich A, Huttenlocher F, Kuhn BM, Pfannstiel J, Gabler L, et al. (2009) The protease-associated domain and C-terminal extension are required for zymogen processing, sorting within the secretory pathway, and activity of tomato subtilase 3 (SlSBT3). J Biol Chem 284: 14068–14078. doi: 10.1074/jbc.m900370200
[39]  Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, et al. (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760–770. doi: 10.1105/tpc.009159
[40]  Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, et al. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–83. doi: 10.1038/415977a
[41]  Bethke G, Unthan T, Uhrig JF, P?schl Y, Gust AA, et al. (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci USA 106: 8067–8072. doi: 10.1073/pnas.0810206106
[42]  Bethke G, Pecher P, Eschen-Lippold L, Tesuda K, Katagiri F, et al. (2012) Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. Mol Plant-Microbe Interactions 25: 471–480. doi: 10.1094/mpmi-11-11-0281
[43]  Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15: 247–258. doi: 10.1016/j.tplants.2010.02.006
[44]  Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51: 21–37.
[45]  Zhang H, Deng X, Miki D, Cutler S, La H, Hou Y-J, et al. (2012) Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. Plant Cell 24: 1230–1241. doi: 10.1105/tpc.112.096149
[46]  Coego A, Ramírez V, Ellul P, Mayda E, Vera P (2005) The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J 42: 283–293. doi: 10.1111/j.1365-313x.2005.02372.x
[47]  Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S, et al. (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24: 275–287. doi: 10.1105/tpc.111.093039
[48]  O'Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, et al. (2012) A Peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells Functions in MAMP-elicited defense. Plant Physiol 158: 2013–2027. doi: 10.1104/pp.111.190140
[49]  Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84: 579–621. doi: 10.1152/physrev.00028.2003
[50]  Buchon N, Poidevin M, Kwon H-M, Guillou A, Sottas V, et al. (2009) A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. Proc Natl Acad Sci USA 106: 12442–12447. doi: 10.1073/pnas.0901924106
[51]  Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. FASEB J 19: 872–874. doi: 10.1096/fj.04-3211fje
[52]  de Zoete MR, Bouwman LI, Keestra AM, van Putten JPM (2011) Cleavage and activation of a Toll-like receptor by microbial proteases. Proc Natl Acad Sci USA 108: 4968–4973. doi: 10.1073/pnas.1018135108
[53]  Singh P, Kuo Y-C, Mishra S, Tsai C-H, Chien C-C, et al. (2012) The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24: 1256–1270. doi: 10.1105/tpc.112.095778
[54]  Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19: 3778–3790. doi: 10.1105/tpc.107.054494
[55]  Haring M, Offermann S, Danker T, Horst I, Peterhansel C, et al. (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3: 11. doi: 10.1186/1746-4811-3-11

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133