全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes

DOI: 10.1371/journal.ppat.1003443

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV) in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA) immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02). Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04) and the level of HA groups (p-value = 0.05). In contrast, infection patterns did not support specific immunity for neuraminidase (NA) subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.

References

[1]  Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza-a viruses. Microbiol Rev 56: 152–179.
[2]  Olsen B, Munster VJ, Wallensten A, Waldenstr?m J, Osterhaus ADME, et al. (2006) Global patterns of influenza A virus in wild birds. Science 312: 384–388. doi: 10.1126/science.1122438
[3]  De Jong JC, Rimmelzwaan GF, Fouchier RA, Osterhaus AD (2000) Influenza virus: a master of metamorphosis. J Infect 40: 218–228. doi: 10.1053/jinf.2000.0652
[4]  Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF (2011) Immune responses to influenza virus infection. Virus Research 162: 19–30 10.1016/j.virusres.2011.09.022. doi: 10.1016/j.virusres.2011.09.022
[5]  Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, et al. (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371–376. doi: 10.1126/science.1097211
[6]  Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, et al. (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79: 2814–2822. doi: 10.1128/jvi.79.5.2814-2822.2005
[7]  Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, et al. (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 4: e1000076 10.1371/journal.ppat.1000076. doi: 10.1371/journal.ppat.1000076
[8]  Gupta S, Ferguson N, Anderson R (1998) Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280: 912–915. doi: 10.1126/science.280.5365.912
[9]  Fereidouni SR, Starick E, Beer M, Wilking H, Kalthoff D, et al. (2009) Highly pathogenic avian influenza virus infection of Mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS ONE 4: e6706 10.1371/journal.pone.0006706. doi: 10.1371/journal.pone.0006706
[10]  Kida H, Yanagawa R, Matsuoka Y (1980) Duck influenza lacking evidence of disease signs and immune response. Infect Immun 30: 547–553.
[11]  Costa TP, Brown JD, Howerth EW, Stallknecht DE (2010) Effect of a prior exposure to a low pathogenic avian influenza virus in the outcome of a heterosubtypic low pathogenic avian influenza infection in Mallards (Anas platyrhynchos). Avian Dis 54: 1286–1291 10.1637/9480-072210-Reg.1. doi: 10.1637/9480-072210-reg.1
[12]  Jourdain E, Gunnarsson G, Wahlgren J, Latorre-Margalef N, Br?jer C, et al. (2010) Influenza virus in a natural host, the Mallard: Experimental infection data. PLoS ONE 5: e8935 10.1371/journal.pone.0008935. doi: 10.1371/journal.pone.0008935
[13]  Costa TP, Brown JD, Howerth EW, Stallknecht DE (2011) Variation in viral shedding patterns between different wild bird species infected experimentally with low-pathogenicity avian influenza viruses that originated from wild birds. Avian Pathol 40: 119–124 10.1080/03079457.2010.540002. doi: 10.1080/03079457.2010.540002
[14]  Brown JD, Berghaus RD, Costa TP, Poulson R, Carter DL, et al. (2012) Intestinal excretion of a wild bird-origin H3N8 low pathogenic avian influenza virus in mallards (Anas platyrhynchos). J Wildl Dis 48: 991–998 10.7589/2011-09-280. doi: 10.7589/2011-09-280
[15]  Fereidouni SR, Grund C, Haeuslaigner R, Lange E, Wilking H, et al. (2010) Dynamics of specific antibody responses induced in Mallards after infection by or immunization with low pathogenicity avian influenza viruses. Avian Dis 54: 79–85. doi: 10.1637/9005-073109-reg.1
[16]  Webster RG, Peiris M, Chen H, Guan Y (2006) H5N1 outbreaks and enzootic influenza. Emerg Infect Dis 12: 3–8. doi: 10.3201/eid1201.051024
[17]  Kalthoff D, Breithaupt A, Teifke JP, Globig A, Harder T, et al. (2008) Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg Infect Dis 14: 1267–1270 10.3201/eid1408.080078. doi: 10.3201/eid1408.080078
[18]  Berhane Y, Leith M, Embury-Hyatt C, Neufeld J, Babiuk S, et al. (2010) Studying possible cross-protection of Canada Geese preexposed to North American low pathogenicity avian influenza virus strains (H3N8, H4N6, and H5N2) against an H5N1 highly pathogenic avian influenza challenge. Avian Dis 54: 548–554. doi: 10.1637/8841-040309-reg.1
[19]  Costa TP, Brown JD, Howerth EW, Stallknecht DE, Swayne DE (2011) Homo- and heterosubtypic low lathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in Wood Ducks (Aix sponsa). PLoS ONE 6: e15987. doi: 10.1371/journal.pone.0015987
[20]  van den Berg T, Lambrecht B, Marché S, Steensels M, Van Borm S, et al. (2008) Influenza vaccines and vaccination strategies in birds. Comp Immunol Microbiol Infect Dis 31: 121–165. doi: 10.1016/j.cimid.2007.07.004
[21]  Capua I, Terregino C, Cattoli G, Mutinelli F, Rodriguez JF (2003) Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian Pathol 32: 47–55 10.1080/0307945021000070714. doi: 10.1080/0307945021000070714
[22]  Lee YJ, Sung HW, Choi JG, Lee EK, Jeong OM, et al. (2007) Effects of homologous and heterologous neuraminidase vaccines in chickens against H5N1 highly pathogenic avian influenza. Avian Dis 51: 476–478. doi: 10.1637/7548-033106r.1
[23]  Osterhaus A, Fouchier R, Rimmelzwaan G (2011) Towards universal influenza vaccines? Philos Trans R Soc B-Biol Sci 366: 2766–2773 10.1098/rstb.2011.0102. doi: 10.1098/rstb.2011.0102
[24]  Ekiert DC, Bhabha G, Elsliger MA, Friesen RHE, Jongeneelen M, et al. (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324: 246–251 10.1126/science.1171491. doi: 10.1126/science.1171491
[25]  Ekiert DC, Friesen RHE, Bhabha G, Kwaks T, Jongeneelen M, et al. (2011) A highly conserved neutralizing epitope on Group 2 influenza A viruses. Science 333: 843–850 10.1126/science.1204839. doi: 10.1126/science.1204839
[26]  Magor KE (2011) Immunoglobulin genetics and antibody responses to influenza in ducks. Dev Comp Immunol 35: 1008–1017 10.1016/j.dci.2011.02.011. doi: 10.1016/j.dci.2011.02.011
[27]  Fleming-Canepa X, Brusnyk C, Aldridge JR, Ross KL, Moon D, et al. (2011) Expression of duck CCL19 and CCL21 and CCR7 receptor in lymphoid and influenza-infected tissues. Mol Immunol 48: 1950–1957 10.1016/j.molimm.2011.05.025. doi: 10.1016/j.molimm.2011.05.025
[28]  Bahl J, Vijaykrishna D, Holmes EC, Smith GJD, Guan Y (2009) Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology 390: 289–297 10.1016/j.virol.2009.05.002. doi: 10.1016/j.virol.2009.05.002
[29]  Suss J, Schafer J, Sinnecker H, Webster RG (1994) Influenza virus subtypes in aquatic birds of eastern Germany. Arch Virol 135: 101–114. doi: 10.1007/bf01309768
[30]  Globig A, Baumer A, Revilla-Fernandez S, Beer M, Wodak E, et al. (2009) Ducks as sentinels for avian influenza in wild birds. Emerg Infect Dis 15: 1633–1636 10.3201/eid1510.090439. doi: 10.3201/eid1510.090439
[31]  Latorre-Margalef N, Gunnarsson G, Munster VJ, Fouchier RAM, Osterhaus ADME, et al. (2009) Effects of influenza A virus infection on migrating mallard ducks. Proc R Soc B-Biol Sci 276: 1029–1036 10.1098/rspb.2008.1501. doi: 10.1098/rspb.2008.1501
[32]  Wallensten A, Munster VJ, Latorre-Margalef N, Brytting M, Elmberg J, et al. (2007) Surveillance of influenza A virus in migratory waterfowl in northern Europe. Emerg Infect Dis 13: 404–411. doi: 10.3201/eid1303.061130
[33]  Costa TP, Brown JD, Howerth EW, Stallknecht DE (2010) The effect of age on avian influenza viral shedding in Mallards (Anas platyrhynchos). Avian Dis 54: 581–585. doi: 10.1637/8692-031309-resnote.1
[34]  Seo SH, Peiris M, Webster RG (2002) Protective cross-reactive cellular immunity to lethal A/Goose/Guangdong/1/96-Like H5N1 influenza virus is correlated with the proportion of pulmonary CD8(+) T cells expressing gamma interferon. J Virol 76: 4886–4890. doi: 10.1128/jvi.76.10.4886-4890.2002
[35]  Munster VJ, Baas C, Lexmond P, Waldenstr?m J, Wallensten A, et al. (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3: e61 doi:10.1371/journal.ppat.0030061.
[36]  Wang RX, Soll L, Dugan V, Runstadler J, Happ G, et al. (2008) Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method. Virology 375: 182–189. doi: 10.1016/j.virol.2008.01.041
[37]  Hatchette TF, Walker D, Johnson C, Baker A, Pryor SP, et al. (2004) Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J Gen Virol 85: 2327–2337. doi: 10.1099/vir.0.79878-0
[38]  De Marco MA, Foni GE, Campitelli L, Raffini E, Di Trani L, et al. (2003) Circulation of influenza viruses in wild waterfowl wintering in Italy during the 1993–99 period: evidence of virus shedding and seroconversion in wild ducks. Avian Dis 47: 861–866. doi: 10.1637/0005-2086-47.s3.861
[39]  Arenas A, Carranza J, Perea A, Miranda A, Maldonado A, et al. (1990) Type-A influenza-viruses in birds in southern Spain - serological survey by Enzyme-Linked-Immunosorbent-Assay and Hemagglutination Inhibition Tests. Avian Pathol 19: 539–546. doi: 10.1080/03079459008418706
[40]  Seo SH, Webster RG (2001) Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J Virol 75: 2516–2525. doi: 10.1128/jvi.75.6.2516-2525.2001
[41]  Mueller M, Renzullo S, Brooks R, Ruggli N, Hofmann MA (2010) Antigenic characterization of recombinant hemagglutinin proteins derived from different avian influenza virus subtypes. PLoS ONE 5: e9097 10.1371/journal.pone.0009097. doi: 10.1371/journal.pone.0009097
[42]  Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, et al. (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333: 850–856 10.1126/science.1205669. doi: 10.1126/science.1205669
[43]  Sui J, Sheehan J, Hwang WC, Bankston LA, Burchett SK, et al. (2011) Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin Infect Dis 52: 1003–1009 10.1093/cid/cir121. doi: 10.1093/cid/cir121
[44]  Delany S, Scott D (2006) Waterbird population estimates. Wetlands International
[45]  Rohm C, Zhou NA, Suss JC, Mackenzie J, Webster RG (1996) Characterization of a novel influenza hemagglutinin, H15: Criteria for determination of influenza a subtypes. Virology 217: 508–516 10.1006/viro.1996.0145. doi: 10.1006/viro.1996.0145
[46]  Hinshaw VS, Air GM, Gibbs AJ, Graves L, Prescott B, et al. (1982) Antigenic and genetic-characterization of a novel hemagglutinin subtype of influenza-A viruses from gulls. J Virol 42: 865–872.
[47]  Tong S, Li Y, Rivailler P, Conrardy C, Castillo DAA, et al. (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109: 4269–4274 10.1073/pnas.1116200109. doi: 10.1073/pnas.1116200109
[48]  Chen R, Holmes EC (2006) Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol 23: 2336–2341 10.1093/molbev/msl102. doi: 10.1093/molbev/msl102
[49]  Lee CW, Senne DA, Suarez DL (2006) Development and application of reference antisera against 15 hemagglutinin subtypes of influenza virus by DNA vaccination of chickens. Clin Vaccine Immunol 13: 395–402 10.1128/cvi.13.3.395-402.2006. doi: 10.1128/cvi.13.3.395-402.2006
[50]  Kraus RHS, van Hooft P, Waldenstr?m J, Latorre-Margalef N, et al. (2011) Avian influenza surveillance with FTA cards: Field methods, biosafety, and transportation issues solved. J Vis Exp 54: e2832 10.3791/2832. doi: 10.3791/2832
[51]  Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, et al. (2002) Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40: 3256–3260. doi: 10.1128/jcm.40.9.3256-3260.2002
[52]  VLA (2007) One Step RT PCR for detection of H5 & H7 avian influenza & cleavage site sequencing.
[53]  WHO (2005) WHO manual on animal influenza diagnosis and surveillance.
[54]  Orozovic G, Latorre-Margalef N, Wahlgren J, Muradrasoli S, Olsen B (2010) Degenerate primers for PCR amplification and sequencing of the avian influenza A neuraminidase gene. J Virol Methods 170: 94–98 10.1016/j.jviromet.2010.09.006. doi: 10.1016/j.jviromet.2010.09.006
[55]  Phipps LP, Essen SC, Brown IH (2004) Genetic subtyping of influenza A viruses using RT-PCR with a single set of primers based on conserved sequences within the HA2 coding region. J Virol Methods 122: 119–122. doi: 10.1016/j.jviromet.2004.08.008
[56]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf) 41: 95–98.
[57]  R Development Core Team (R version 2.14.0, 2011) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0
[58]  Agresti A (2001) Exact inference for categorical data: recent advances and continuing controversies. Stat Med 20: 2709–2722 10.1002/sim.738. doi: 10.1002/sim.738
[59]  Mehta CR, Patel NR (1998) Exact inference for categorical data. In: Armitage P, Colton T, editors. Encyclopedia of Biostatistics. Chichester: John Wiley. pp. 1411–1422.
[60]  Mehta CR, Patel NR (1986) FEXACT : A Fontran subroutine for Fisher exact test on unordered r *c contingency tables. ACM Trans Math Softw 12: 154–161 10.1145/6497.214326. doi: 10.1145/6497.214326
[61]  Crawley MJ (2007) The R book. Chichester: John Wiley. 877 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133