Entomopathogenic fungi represent a promising class of bio-insecticides for mosquito control. Thus, detailed knowledge of the molecular mechanisms governing anti-fungal immune response in mosquitoes is essential. In this study, we show that CLSP2 is a modulator of immune responses during anti-fungal infection in the mosquito Aedes aegypti. With a fungal infection, the expression of the CLSP2 gene is elevated. CLSP2 is cleaved upon challenge with Beauveria bassiana conidia, and the liberated CLSP2 CTL-type domain binds to fungal cell components and B. bassiana conidia. Furthermore, CLPS2 RNA interference silencing significantly increases the resistance to the fungal challenge. RNA-sequencing transcriptome analysis showed that the majority of immune genes were highly upregulated in the CLSP2-depleted mosquitoes infected with the fungus. The up-regulated immune gene cohorts belong to melanization and Toll pathways, but not to the IMD or JAK-STAT. A thioester-containing protein (TEP22), a member of α2-macroglobulin family, has been implicated in the CLSP2-modulated mosquito antifungal defense. Our study has contributed to a greater understanding of immune-modulating mechanisms in mosquitoes.
References
[1]
Attardo GM, Hansen IA, Raikhel AS (2005) Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology 35: 661–675. pmid:15894184 doi: 10.1016/j.ibmb.2005.02.013
[2]
Ramirez JL, Garver LS, Dimopoulos G (2009) Challenges and approaches for mosquito targeted malaria control. Curr Mol Med 9: 116–130. pmid:19275622 doi: 10.2174/156652409787581600
[3]
Fang W, Azimzadeh P, Leger RJ (2012) Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol 15: 232–238. doi: 10.1016/j.mib.2011.12.012. pmid:22245564
Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, et al. (1997) Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90: 293–301. pmid:9244303 doi: 10.1016/s0092-8674(00)80337-2
[6]
Shin SW, Kokoza V, Bian G, Cheon HM, Kim YJ, et al. (2005) REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem 280: 16499–16507. pmid:15722339 doi: 10.1074/jbc.m500711200
[7]
Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 697–743. pmid:17201680 doi: 10.1146/annurev.immunol.25.022106.141615
[8]
Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, et al. (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38: 1087–1110. doi: 10.1016/j.ibmb.2008.09.001. pmid:18835443
[9]
Roh KB, Kim CH, Lee H, Kwon HM, Park JW, et al. (2009) Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J Biol Chem 284: 19474–19481. doi: 10.1074/jbc.M109.007419. pmid:19473968
[10]
Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7: 862–874. pmid:17948019 doi: 10.1038/nri2194
[11]
Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, et al. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127: 1425–1437. pmid:17190605 doi: 10.1016/j.cell.2006.10.046
[12]
Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114–116. pmid:12098703 doi: 10.1126/science.1072391
[13]
Jang IH, Chosa N, Kim SH, Nam HJ, Lemaitre B, et al. (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev Cell 10: 45–55. pmid:16399077 doi: 10.1016/j.devcel.2005.11.013
[14]
Lemaitre B, Nicolas E, Michaut L, Reichhart J-M, Hoffmann JA (1996) The Dorsoventral Regulatory Gene Cassette sp?tzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell 86: 973–983. pmid:8808632 doi: 10.1016/s0092-8674(00)80172-5
[15]
Zou Z, Shin SW, Alvarez KS, Kokoza V, Raikhel AS (2010) Distinct melanization pathways in the mosquito Aedes aegypti. Immunity 32: 41–53. doi: 10.1016/j.immuni.2009.11.011. pmid:20152169
[16]
Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, et al. (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316: 1738–1743. pmid:17588928 doi: 10.1126/science.1139862
Yassine H, Kamareddine L, Osta MA (2012) The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana. PLoS Pathog 8: e1003029. doi: 10.1371/journal.ppat.1003029. pmid:23166497
[19]
Shin SW, Zou Z, Raikhel AS (2011) A new factor in the Aedes aegypti immune response: CLSP2 modulates melanization. EMBO Rep 12: 938–943. doi: 10.1038/embor.2011.130. pmid:21760616
[20]
Dong Y, Dimopoulos G (2009) Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 284: 9835–9844. doi: 10.1074/jbc.M807084200. pmid:19193639
[21]
Kokoza V, Ahmed A, Woon Shin S, Okafor N, Zou Z, et al. (2010) Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences 107: 8111–8116. doi: 10.1073/pnas.1003056107. pmid:20385844
[22]
Zou Z, Souza-Neto J, Xi Z, Kokoza V, Shin SW, et al. (2011) Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity. PLoS Pathog 7: e1002394. doi: 10.1371/journal.ppat.1002394. pmid:22114564
[23]
Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway—its role in innate immunity and evolution. Immunol Rev 198: 185–202. pmid:15199963 doi: 10.1111/j.0105-2896.2004.0123.x
[24]
Zhu LL, Zhao XQ, Jiang C, You Y, Chen XP, et al. (2013) C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39: 324–334. doi: 10.1016/j.immuni.2013.05.017. pmid:23911656
[25]
Osta MA, Christophides GK, Kafatos FC (2004) Effects of mosquito genes on Plasmodium development. Science 303: 2030–2032. pmid:15044804 doi: 10.1126/science.1091789
[26]
Cheng G, Cox J, Wang P, Krishnan MN, Dai J, et al. (2010) A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142: 714–725. doi: 10.1016/j.cell.2010.07.038. pmid:20797779
[27]
Ji C, Wang Y, Guo X, Hartson S, Jiang H (2004) A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, Manduca sexta. J Biol Chem 279: 34101–34106. pmid:15190055 doi: 10.1074/jbc.m404584200
[28]
Jiang H, Kanost MR (2000) The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol 30: 95–105. pmid:10696585 doi: 10.1016/s0965-1748(99)00113-7
[29]
Volohonsky G, Steinert S, Levashina EA (2010) Focusing on complement in the antiparasitic defense of mosquitoes. Trends Parasitol 26: 1–3. doi: 10.1016/j.pt.2009.10.003. pmid:19853513
[30]
Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, et al. (2004) Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116: 661–670. pmid:15006349 doi: 10.1016/s0092-8674(04)00173-4
[31]
Fraiture M, Baxter RH, Steinert S, Chelliah Y, Frolet C, et al. (2009) Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium. Cell Host Microbe 5: 273–284. doi: 10.1016/j.chom.2009.01.005. pmid:19286136
[32]
Riehle MM, Markianos K, Niare O, Xu J, Li J, et al. (2006) Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312: 577–579. pmid:16645095 doi: 10.1126/science.1124153
[33]
Povelones M, Waterhouse RM, Kafatos FC, Christophides GK (2009) Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites. Science 324: 258–261. doi: 10.1126/science.1171400. pmid:19264986
[34]
Vasta GR, Quesenberry M, Ahmed H, O'Leary N (1999) C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev Comp Immunol 23: 401–420. pmid:10426431 doi: 10.1016/s0145-305x(99)00020-8
Iwami KI, Matsuguchi T, Masuda A, Kikuchi T, Musikacharoen T, et al. (2000) Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 165: 6682–6686. pmid:11120784 doi: 10.4049/jimmunol.165.12.6682
[37]
De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 98: 12590–12595. pmid:11606746 doi: 10.1073/pnas.221458698
[38]
Hays AR, Raikhel AS (1990) A Novel Protein Produced by the Vitellogenic Fat-Body and Accumulated in Mosquito Oocytes. Rouxs Archives of Developmental Biology 199: 114–121. doi: 10.1007/bf02029559
[39]
Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, et al. (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2: 483. doi: 10.1038/srep00483. pmid:22761991
[40]
Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS (2006) Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. J Biol Chem 281: 8426–8435. pmid:16449228 doi: 10.1074/jbc.m510957200
[41]
Yu XQ, Kanost MR (2000) Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. J Biol Chem 275: 37373–37381. pmid:10954704 doi: 10.1074/jbc.m003021200
[42]
Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–1875. pmid:15728110 doi: 10.1093/bioinformatics/bti310
[43]
Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26: 136–138. doi: 10.1093/bioinformatics/btp612. pmid:19855105
[44]
Chen X, Hu Y, Zheng H, Cao L, Niu D, et al. (2012) Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochem Mol Biol 42: 665–673. doi: 10.1016/j.ibmb.2012.05.004. pmid:22659440
[45]
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. doi: 10.1093/molbev/mst197. pmid:24132122