全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Staphylococcus aureus Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC when Extracellular, but Not Intracellular

DOI: 10.1371/journal.ppat.1004970

Full-Text   Cite this paper   Add to My Lib

Abstract:

Staphylococcus aureus infections are a growing health burden worldwide, and paramount to this bacterium’s pathogenesis is the production of virulence factors, including pore-forming leukotoxins. Leukocidin A/B (LukAB) is a recently discovered toxin that kills primary human phagocytes, though the underlying mechanism of cell death is not understood. We demonstrate here that LukAB is a major contributor to the death of human monocytes. Using a variety of in vitro and ex vivo intoxication and infection models, we found that LukAB activates Caspase 1, promotes IL-1β secretion and induces necrosis in human monocytes. Using THP1 cells as a model for human monocytes, we found that the inflammasome components NLRP3 and ASC are required for LukAB-mediated IL-1β secretion and necrotic cell death. S. aureus was shown to kill human monocytes in a LukAB dependent manner under both extracellular and intracellular ex vivo infection models. Although LukAB-mediated killing of THP1 monocytes from extracellular S. aureus requires ASC, NLRP3 and the LukAB-receptor CD11b, LukAB-mediated killing from phagocytosed S. aureus is independent of ASC or NLRP3, but dependent on CD11b. Altogether, this study provides insight into the nature of LukAB-mediated killing of human monocytes. The discovery that S. aureus LukAB provokes differential host responses in a manner dependent on the cellular contact site is critical for the development of anti-infective/anti-inflammatory therapies that target the NLRP3 inflammasome.

References

[1]  Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763–1771. pmid:17940231 doi: 10.1001/jama.298.15.1763
[2]  Alonzo F 3rd, Torres VJ (2014) The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78: 199–230. doi: 10.1128/MMBR.00055-13. pmid:24847020
[3]  DuMont AL, Torres VJ (2014) Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends Microbiol 22: 21–27. doi: 10.1016/j.tim.2013.10.004. pmid:24231517
[4]  Bramley AJ, Patel AH, O'Reilly M, Foster R, Foster TJ (1989) Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect Immun 57: 2489–2494. pmid:2744856
[5]  Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O (2007) Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13: 1405–1406. pmid:18064027 doi: 10.1038/nm1207-1405
[6]  Bubeck Wardenburg J, Patel RJ, Schneewind O (2007) Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 75: 1040–1044. pmid:17101657 doi: 10.1128/iai.01313-06
[7]  Girgis DO, Sloop GD, Reed JM, O'Callaghan RJ (2005) Effects of toxin production in a murine model of Staphylococcus aureus keratitis. Invest Ophthalmol Vis Sci 46: 2064–2070. pmid:15914624 doi: 10.1167/iovs.04-0897
[8]  Kennedy AD, Bubeck Wardenburg J, Gardner DJ, Long D, Whitney AR, et al. (2010) Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J Infect Dis 202: 1050–1058. doi: 10.1086/656043. pmid:20726702
[9]  Rauch S, DeDent AC, Kim HK, Bubeck Wardenburg J, Missiakas DM, et al. (2012) Abscess formation and alpha-hemolysin induced toxicity in a mouse model of Staphylococcus aureus peritoneal infection. Infect Immun 80: 3721–3732. doi: 10.1128/IAI.00442-12. pmid:22802349
[10]  Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR (2008) Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 198: 1166–1170. doi: 10.1086/592053. pmid:18729780
[11]  Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, et al. (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315: 1130–1133. pmid:17234914 doi: 10.1126/science.1137165
[12]  Tseng CW, Kyme P, Low J, Rocha MA, Alsabeh R, et al. (2009) Staphylococcus aureus Panton-Valentine leukocidin contributes to inflammation and muscle tissue injury. PLoS One 4: e6387. doi: 10.1371/journal.pone.0006387. pmid:19633710
[13]  Zaidi T, Zaidi T, Yoong P, Pier GB (2013) Staphylococcus aureus corneal infections: effect of the Panton-Valentine leukocidin (PVL) and antibody to PVL on virulence and pathology. Invest Ophthalmol Vis Sci 54: 4430–4438. doi: 10.1167/iovs.13-11701. pmid:23737477
[14]  Cremieux AC, Dumitrescu O, Lina G, Vallee C, Cote JF, et al. (2009) Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant Staphylococcus aureus rabbit osteomyelitis. PLoS One 4: e7204. doi: 10.1371/journal.pone.0007204. pmid:19779608
[15]  Lipinska U, Hermans K, Meulemans L, Dumitrescu O, Badiou C, et al. (2011) Panton-Valentine leukocidin does play a role in the early stage of Staphylococcus aureus skin infections: a rabbit model. PLoS One 6: e22864. doi: 10.1371/journal.pone.0022864. pmid:21850240
[16]  Diep BA, Palazzolo-Ballance AM, Tattevin P, Basuino L, Braughton KR, et al. (2008) Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 3: e3198. doi: 10.1371/journal.pone.0003198. pmid:18787708
[17]  Diep BA, Chan L, Tattevin P, Kajikawa O, Martin TR, et al. (2010) Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci U S A 107: 5587–5592. doi: 10.1073/pnas.0912403107. pmid:20231457
[18]  Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, et al. (2010) Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6: e1000715. doi: 10.1371/journal.ppat.1000715. pmid:20072612
[19]  Spaan AN, Henry T, van Rooijen WJ, Perret M, Badiou C, et al. (2013) The staphylococcal toxin panton-valentine leukocidin targets human c5a receptors. Cell Host Microbe 13: 584–594. doi: 10.1016/j.chom.2013.04.006. pmid:23684309
[20]  DuMont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, et al. (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79: 814–825. doi: 10.1111/j.1365-2958.2010.07490.x. pmid:21255120
[21]  Ventura CL, Malachowa N, Hammer CH, Nardone GA, Robinson MA, et al. (2010) Identification of a novel Staphylococcus aureus two-component leukotoxin using cell surface proteomics. PLoS One 5: e11634. doi: 10.1371/journal.pone.0011634. pmid:20661294
[22]  DuMont AL, Yoong P, Day CJ, Alonzo F 3rd, McDonald WH, et al. (2013) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci U S A 110: 10794–10799. doi: 10.1073/pnas.1305121110. pmid:23754403
[23]  Malachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, et al. (2012) Staphylococcus aureus Leukotoxin GH Promotes Inflammation. J Infect Dis 206: 1185–1193. pmid:22872735 doi: 10.1093/infdis/jis495
[24]  DuMont AL, Yoong P, Liu X, Day CJ, Chumbler NM, et al. (2014) Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect Immun 82: 1268–1276. doi: 10.1128/IAI.01444-13. pmid:24379286
[25]  DuMont AL, Yoong P, Surewaard BG, Benson MA, Nijland R, et al. (2013) Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun 81: 1830–1841. doi: 10.1128/IAI.00095-13. pmid:23509138
[26]  Kebaier C, Chamberland RR, Allen IC, Gao X, Broglie PM, et al. (2012) Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis 205: 807–817. doi: 10.1093/infdis/jir846. pmid:22279123
[27]  Davis B, Wen H, Ting J (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annual review of immunology 29: 707–735. doi: 10.1146/annurev-immunol-031210-101405. pmid:21219188
[28]  Craven R, Gao X, Allen I, Gris D, Bubeck Wardenburg J, et al. (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PloS one 4. doi: 10.1371/journal.pone.0007446
[29]  Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman D, et al. (2012) Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. Journal of leukocyte biology 92: 1069–1081. doi: 10.1189/jlb.0112014. pmid:22892107
[30]  Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232. pmid:16407890 doi: 10.1038/nature04515
[31]  Hanamsagar R, Torres V, Kielian T (2011) Inflammasome activation and IL-1beta/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem 119: 736–748. doi: 10.1111/j.1471-4159.2011.07481.x. pmid:21913925
[32]  Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, et al. (2012) Neutrophil-derived IL-1beta is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog 8: e1003047. doi: 10.1371/journal.ppat.1003047. pmid:23209417
[33]  Confalonieri M, Annane D, Antonaglia C, Santagiuliana M, Borriello EM, et al. (2013) Is prolonged low-dose glucocorticoid treatment beneficial in community-acquired pneumonia? Curr Infect Dis Rep 15: 158–166. doi: 10.1007/s11908-013-0322-8. pmid:23371407
[34]  Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, et al. (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2: 147–159. pmid:18005730 doi: 10.1016/j.chom.2007.07.009
[35]  Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10: 417–426. pmid:12191486 doi: 10.3410/f.1008963.128907
[36]  Duthie ES, Lorenz LL (1952) Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol 6: 95–107. pmid:14927856 doi: 10.1099/00221287-6-1-2-95
[37]  Munoz-Planillo R, Franchi L, Miller LS, Nunez G (2009) A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol 183: 3942–3948. doi: 10.4049/jimmunol.0900729. pmid:19717510
[38]  Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11: 1050–1062. doi: 10.1016/j.micinf.2009.08.013. pmid:19733681
[39]  Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663–669. pmid:15530778 doi: 10.1016/j.ceb.2004.09.011
[40]  Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7: 99–109. doi: 10.1038/nrmicro2070. pmid:19148178
[41]  Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195. pmid:12110890 doi: 10.1038/nature00858
[42]  Bedner E, Smolewski P, Amstad P, Darzynkiewicz Z (2000) Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp Cell Res 259: 308–313. pmid:10942603 doi: 10.1006/excr.2000.4955
[43]  Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, et al. (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153. doi: 10.1016/j.immuni.2013.05.016. pmid:23809161
[44]  Warny M, Kelly CP (1999) Monocytic cell necrosis is mediated by potassium depletion and caspase-like proteases. Am J Physiol 276: C717–724. pmid:10070000
[45]  Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, et al. (2007) (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoy l)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther 321: 509–516. pmid:17289835 doi: 10.1124/jpet.106.111344
[46]  Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774. pmid:1574116 doi: 10.1038/356768a0
[47]  Schindler CA, Schuhardt VT (1964) Lysostaphin: A New Bacteriolytic Agent for the Staphylococcus. Proc Natl Acad Sci U S A 51: 414–421. pmid:14171453 doi: 10.1073/pnas.51.3.414
[48]  Thomsen IP, Dumont AL, James DB, Yoong P, Saville BR, et al. (2014) Children with invasive Staphylococcus aureus disease exhibit a potently neutralizing antibody response to the cytotoxin LukAB. Infect Immun 82: 1234–1242. doi: 10.1128/IAI.01558-13. pmid:24379282
[49]  Yazdi AS, Drexler SK, Tschopp J (2010) The role of the inflammasome in nonmyeloid cells. J Clin Immunol 30: 623–627. doi: 10.1007/s10875-010-9437-y. pmid:20582456
[50]  Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243: 136–151. doi: 10.1111/j.1600-065X.2011.01046.x. pmid:21884173
[51]  Spaan AN, Surewaard BG, Nijland R, van Strijp JA (2013) Neutrophils Versus Staphylococcus aureus: A Biological Tug of War. Annu Rev Microbiol. doi: 10.1146/annurev-micro-092412-155746
[52]  Bakele M, Joos M, Burdi S, Allgaier N, Poschel S, et al. (2014) Localization and functionality of the inflammasome in neutrophils. J Biol Chem 289: 5320–5329. doi: 10.1074/jbc.M113.505636. pmid:24398679
[53]  Mankan AK, Dau T, Jenne D, Hornung V (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol 42: 710–715. doi: 10.1002/eji.201141921. pmid:22213227
[54]  Karmakar M, Katsnelson M, Malak HA, Greene NG, Howell SJ, et al. (2015) Neutrophil IL-1beta processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol 194: 1763–1775. doi: 10.4049/jimmunol.1401624. pmid:25609842
[55]  Motani K, Kushiyama H, Imamura R, Kinoshita T, Nishiuchi T, et al. (2011) Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity. J Biol Chem 286: 33963–33972. doi: 10.1074/jbc.M111.286823. pmid:21832064
[56]  Feng Q, Li P, Leung PC, Auersperg N (2004) Caspase-1zeta, a new splice variant of the caspase-1 gene. Genomics 84: 587–591. pmid:15498465 doi: 10.1016/j.ygeno.2004.06.005
[57]  Badarau A, Rouha H, Malafa S, Logan DT, Hakansson M, et al. (2015) Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 290: 142–156. doi: 10.1074/jbc.M114.598110. pmid:25371205
[58]  Hamon MA, Cossart P (2011) K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infect Immun 79: 2839–2846. doi: 10.1128/IAI.01243-10. pmid:21482680
[59]  Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, et al. (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7: 412–419. doi: 10.1016/j.chom.2010.04.004. pmid:20417169
[60]  Sokolovska A, Becker CE, Ip WK, Rathinam VA, Brudner M, et al. (2013) Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol 14: 543–553. doi: 10.1038/ni.2595. pmid:23644505
[61]  Reyes-Robles T, Alonzo F 3rd, Kozhaya L, Lacy DB, Unutmaz D, et al. (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14: 453–459. doi: 10.1016/j.chom.2013.09.005. pmid:24139401
[62]  Benson MA, Lilo S, Nygaard T, Voyich JM, Torres VJ (2012) Rot and SaeRS cooperate to activate expression of the staphylococcal superantigen-like exoproteins. J Bacteriol 194: 4355–4365. doi: 10.1128/JB.00706-12. pmid:22685286
[63]  Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, et al. (1995) Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63: 3373–3380. pmid:7642265
[64]  Centers for Disease C, Prevention (1999) Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus—Minnesota and North Dakota, 1997–1999. MMWR Morb Mortal Wkly Rep 48: 707–710. pmid:21033181 doi: 10.1001/archderm.135.12.1566
[65]  Supersac G, Piemont Y, Kubina M, Prevost G, Foster TJ (1998) Assessment of the role of gamma-toxin in experimental endophthalmitis using a hlg-deficient mutant of Staphylococcus aureus. Microb Pathog 24: 241–251. pmid:9533895 doi: 10.1006/mpat.1997.0192
[66]  Benson MA, Ohneck EA, Ryan C, Alonzo F 3rd, Smith H, et al. (2014) Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element. Mol Microbiol 93: 664–681. doi: 10.1111/mmi.12682. pmid:24962815
[67]  Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, et al. (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367: 731–739. pmid:16517273 doi: 10.1016/s0140-6736(06)68231-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133