Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes.
References
[1]
Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLOS Pathog 2007;3: e173. pmid:18039029 doi: 10.1371/journal.ppat.0030173
[2]
Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLOS Pathog 2006;2: e56. pmid:16789834 doi: 10.1371/journal.ppat.0020056
[3]
Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol 2007;25: 697–743. pmid:17201680 doi: 10.1146/annurev.immunol.25.022106.141615
[4]
Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, et al. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in Drosophila gut. Nat Immunol 2009;10: 949–957. doi: 10.1038/ni.1765. pmid:19668222
[5]
Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, et al. Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 2009;16: 386–397. doi: 10.1016/j.devcel.2008.12.015. pmid:19289084
[6]
Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 2013 May 9;153(4):797–811. doi: 10.1016/j.cell.2013.04.009. pmid:23663779
[7]
Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci USA 2011;108: 15966–15971. doi: 10.1073/pnas.1105994108. pmid:21896728
[8]
Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 2009;5: 200–211. doi: 10.1016/j.chom.2009.01.003. pmid:19218090
[9]
Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B, et al. Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 2013;3: 1725–1738. doi: 10.1016/j.celrep.2013.04.001. pmid:23643535
[10]
Shibata T, Sekihara S, Fujikawa T, Miyaji R, Maki K, Ishihara T, et al. Transglutaminase-catalyzed protein-protein cross-linking suppresses the activity of the NF-kappaB-like transcription factor relish. Sci Signal 2013;6: ra61. doi: 10.1126/scisignal.2003970. pmid:23882120
[11]
Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 2003;4: 140–156. pmid:12563291 doi: 10.1038/nrm1014
[12]
Makarova KS, Aravind L, Koonin EV. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 1999;8: 1714–1719. pmid:10452618 doi: 10.1110/ps.8.8.1714
[13]
Shibata T, Ariki S, Shinzawa N, Miyaji R, Suyama H, Sako M, et al. Protein crosslinking by transglutaminase controls cuticle morphogenesis in Drosophila. PLOS One 2010;5: e13477. doi: 10.1371/journal.pone.0013477. pmid:20976106
[14]
Wang Z, Wilhelmsson C, Hyrsl P, Loof TG, Dobes P, Klupp M, et al. Pathogen entrapment by transglutaminase—a conserved early innate immune mechanism. PLOS Pathog 2010;6: e1000763. doi: 10.1371/journal.ppat.1000763. pmid:20169185
[15]
Loof TG, Morgelin M, Johansson L, Oehmcke S, Olin AI, Dickneite G, et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011;118: 2589–2598. doi: 10.1182/blood-2011-02-337568. pmid:21613262
[16]
Lehane MJ. Peritrophic matrix structure and function. Annu Rev Entomol 1997;42: 525–550. pmid:15012322 doi: 10.1146/annurev.ento.42.1.525
[17]
Terra WR. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 2001;47: 47–61. pmid:11376452 doi: 10.1002/arch.1036
[18]
Janssens H, Gehring WJ. Isolation and characterization of drosocrystallin, a lens crystallin gene of Drosophila melanogaster. Dev Biol 1999;207: 204–214. pmid:10049575 doi: 10.1006/dbio.1998.9170
[19]
Komori N, Usukura J, Matsumoto H. Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J Cell Sci 1992;102: 191–201. pmid:1400628
[20]
Rebers JE, Riddiford LM. Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 1988;203: 411–423. pmid:2462055 doi: 10.1016/0022-2836(88)90009-5
[21]
Karouzou MV, Spyropoulos Y, Iconomidou VA, Cornman RS, Hamodrakas SJ, Willis JH. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol 2007;37: 754–760. pmid:17628275 doi: 10.1016/j.ibmb.2008.03.002
[22]
Iijima M, Hashimoto T, Matsuda Y, Nagai T, Yamano Y, Ichi T, et al. Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J 2005;272: 4774–4786. pmid:16156796 doi: 10.1111/j.1742-4658.2005.04891.x
[23]
Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, et al. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci USA 2005;102: 11414–11419. pmid:16061818 doi: 10.1073/pnas.0502240102
[24]
Opota O, Vallet-Gely I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR, et al. Monalysin, a novel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLOS Pathog 2011;7: e1002259. doi: 10.1371/journal.ppat.1002259. pmid:21980286
[25]
Lindgren M, Riazi R, Lesch C, Wilhelmsson C, Theopold U, Dushay MS. Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 2008;54: 586–592. doi: 10.1016/j.jinsphys.2007.12.008. pmid:18222466
[26]
Wang P, Li G, Granados RR. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 2004;34: 215–227. pmid:14871618 doi: 10.1016/j.ibmb.2003.10.001
[27]
Fang S, Wang L, Guo W, Zhang X, Peng D, Luo C, et al. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Appl Environ Microbiol 2009;75: 5237–5243. doi: 10.1128/AEM.00532-09. pmid:19542344
[28]
Wang P, Granados RR. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem 1997;272: 16663–16669. pmid:9195982 doi: 10.1074/jbc.272.26.16663
[29]
Matsuda Y, Osaki T, Hashii T, Koshiba T, Kawabata S. A cysteine-rich protein from an arthropod stabilizes clotting mesh and immobilizes bacteria at injury sites. J Biol Chem 2007;282: 33545–33552. pmid:17855345 doi: 10.1074/jbc.m705854200
[30]
Osaki T, Okino N, Tokunaga F, Iwanaga S, Kawabata S. Proline-rich cell surface antigens of horseshoe crab hemocytes are substrates for protein cross-linking with a clotting protein coagulin. J Biol Chem 2002;277: 40084–40090. pmid:12189150 doi: 10.1074/jbc.m206773200
[31]
Guzzo J, Murgier M, Filloux A, Lazdunski A. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J Bacteriol 1990;172: 942–948. pmid:2153662
[32]
Duong F, Lazdunski A, Cami B, Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 1992;121: 47–54. pmid:1427098 doi: 10.1016/0378-1119(92)90160-q