全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2015 

Structure estimation for mixed graphical models in high-dimensional data

Full-Text   Cite this paper   Add to My Lib

Abstract:

Undirected graphical models are a key component in the analysis of complex observational data in a large variety of disciplines. In many of these applications one is interested in estimating the undirected graphical model underlying a distribution over variables with different domains. Despite the pervasive need for such an estimation method, to date there is no such method that models all variables on their proper domain. We close this methodological gap by combining a new class of mixed graphical models with a structure estimation approach based on generalized covariance matrices. We report the performance of our methods using simulations, illustrate the method with a dataset on Autism Spectrum Disorder (ASD) and provide an implementation as an R-package.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133