全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2015 

Penalized estimation in large-scale generalized linear array models

Full-Text   Cite this paper   Add to My Lib

Abstract:

Large-scale generalized linear array models (GLAMs) can be challenging to fit. Computation and storage of its tensor product design matrix can be impossible due to time and memory constraints, and previously considered design matrix free algorithms do not scale well with the dimension of the parameter vector. A new design matrix free algorithm is proposed for computing the penalized maximum likelihood estimate for GLAMs, which, in particular, handles nondifferentiable penalty functions. The proposed algorithm is implemented and available via the R package \verb+glamlasso+. It combines several ideas -- previously considered separately -- to obtain sparse estimates while at the same time efficiently exploiting the GLAM structure. In this paper the convergence of the algorithm is treated and the performance of its implementation is investigated and compared to that of \verb+glmnet+ on simulated as well as real data. It is shown that the computation time for

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133