全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2015 

Nonlinear State Space Model Identification Using a Regularized Basis Function Expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is concerned with black-box identification of nonlinear state space models. By using a basis function expansion within the state space model, we obtain a flexible structure. The model is identified using an expectation maximization approach, where the states and the parameters are updated iteratively in such a way that a maximum likelihood estimate is obtained. We use recent particle methods with sound theoretical properties to infer the states, whereas the model parameters can be updated using closed-form expressions by exploiting the fact that our model is linear in the parameters. Not to over-fit the flexible model to the data, we also propose a regularization scheme without increasing the computational burden. Importantly, this opens up for systematic use of regularization in nonlinear state space models. We conclude by evaluating our proposed approach on one simulation example and two real-data problems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133