All Title Author
Keywords Abstract

Statistics  2012 

Tail asymptotics for cumulative processes sampled at heavy-tailed random times with applications to queueing models in Markovian environments

Full-Text   Cite this paper   Add to My Lib


This paper considers the tail asymptotics for a cumulative process $\{B(t); t \ge 0\}$ sampled at a heavy-tailed random time $T$. The main contribution of this paper is to establish several sufficient conditions for the asymptotic equality ${\sf P}(B(T) > bx) \sim {\sf P}(M(T) > bx) \sim {\sf P}(T>x)$ as $x \to \infty$, where $M(t) = \sup_{0 \le u \le t}B(u)$ and $b$ is a certain positive constant. The main results of this paper can be used to obtain the subexponential asymptotics for various queueing models in Markovian environments. As an example, using the main results, we derive subexponential asymptotic formulas for the loss probability of a single-server finite-buffer queue with an on/off arrival process in a Markovian environment.


comments powered by Disqus

Contact Us


微信:OALib Journal