全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2013 

Extending mixtures of factor models using the restricted multivariate skew-normal distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution to model the distribution of the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need for the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible ECM algorithm is developed for computing the maximum likelihood estimates of the parameters. Model selection can be made on the basis of three commonly used information-based criteria. The potential of the proposed methodology is exemplified through applications to two real examples, and the results are compared with those obtained from fitting the MFA model.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133