全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2010 

Universality, Characteristic Kernels and RKHS Embedding of Measures

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Hilbert space embedding for probability measures has recently been proposed, wherein any probability measure is represented as a mean element in a reproducing kernel Hilbert space (RKHS). Such an embedding has found applications in homogeneity testing, independence testing, dimensionality reduction, etc., with the requirement that the reproducing kernel is characteristic, i.e., the embedding is injective. In this paper, we generalize this embedding to finite signed Borel measures, wherein any finite signed Borel measure is represented as a mean element in an RKHS. We show that the proposed embedding is injective if and only if the kernel is universal. This therefore, provides a novel characterization of universal kernels, which are proposed in the context of achieving the Bayes risk by kernel-based classification/regression algorithms. By exploiting this relation between universality and the embedding of finite signed Borel measures into an RKHS, we establish the relation between universal and characteristic kernels.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133