全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exact fit of simple finite mixture models

DOI: 10.3390/jrfm7040150

Full-Text   Cite this paper   Add to My Lib

Abstract:

How to forecast next year's portfolio-wide credit default rate based on last year's default observations and the current score distribution? A classical approach to this problem consists of fitting a mixture of the conditional score distributions observed last year to the current score distribution. This is a special (simple) case of a finite mixture model where the mixture components are fixed and only the weights of the components are estimated. The optimum weights provide a forecast of next year's portfolio-wide default rate. We point out that the maximum-likelihood (ML) approach to fitting the mixture distribution not only gives an optimum but even an exact fit if we allow the mixture components to vary but keep their density ratio fix. From this observation we can conclude that the standard default rate forecast based on last year's conditional default rates will always be located between last year's portfolio-wide default rate and the ML forecast for next year. As an application example, then cost quantification is discussed. We also discuss how the mixture model based estimation methods can be used to forecast total loss. This involves the reinterpretation of an individual classification problem as a collective quantification problem.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133