全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using self-similarity and renormalization group to analyze time series

Full-Text   Cite this paper   Add to My Lib

Abstract:

An algorithm based on Renormalization Group (RG) to analyze time series forecasting was proposed in cond-mat/0110285. In this paper we explicitly code and test it. We choose in particular some financial time series (stocks, indexes and commodities) with daily data and compute one step ahead forecasts. We then construct some indicators to evaluate performances. The algorithm is supposed to prescribe the future development of the time series by using the self-similarity property intrinsically present in RG approach. This property could be potentially very attractive for the purpose of building winning trading systems. We discuss some relevant points along this direction. Although current performances have to be improved the algorithm seems quite reactive to various combinations of input parameters and different past values sequences. This makes it a potentially good candidate to detect sharp market movements. We finally mention current drawbacks and sketch how to improve them.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133