|
Quantitative Biology 2006
Towards Classification of Phase Transitions in Reaction--Diffusion ModelsDOI: 10.1103/PhysRevE.74.041101 Abstract: Equilibrium phase transitions are associated with rearrangements of minima of a (Lagrangian) potential. Treatment of non-equilibrium systems requires doubling of degrees of freedom, which may be often interpreted as a transition from the ``coordinate'' to the ``phase'' space representation. As a result, one has to deal with the Hamiltonian formulation of the field theory instead of the Lagrangian one. We suggest a classification scheme of phase transitions in reaction-diffusion models based on the topology of the phase portraits of corresponding Hamiltonians. In models with an absorbing state such a topology is fully determined by intersecting curves of zero ``energy''. We identify four families of topologically distinct classes of phase portraits stable upon RG transformations.
|