|
Quantitative Biology 2008
Mechanism of thermal renaturation and hybridization of nucleic acids: Kramers process and universality in Watson-Crick base pairingAbstract: Renaturation and hybridization reactions lead to the pairing of complementary single-stranded nucleic acids. We present here a theoretical investigation of the mechanism of these reactions in vitro under thermal conditions (dilute solutions of single-stranded chains, in the presence of molar concentrations of monovalent salts and at elevated temperatures). The mechanism follows a Kramers' process, whereby the complementary chains overcome a potential barrier through Brownian motion. The barrier originates from a single rate-limiting nucleation event in which the first complementary base pairs are formed. The reaction then proceeds through a fast growth of the double helix. For the DNA of bacteriophages T7, T4 and $\phi$X174 as well as for Escherichia coli DNA, the bimolecular rate $k_2$ of the reaction increases as a power law of the average degree of polymerization $
|