全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dale's Principle is necessary for an optimal neuronal network's dynamics

DOI: 10.4236/am.2013.410A2002

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a mathematical model of biological neuronal networks composed by any finite number $N \geq 2$ of non necessarily identical cells. The model is a deterministic dynamical system governed by finite-dimensional impulsive differential equations. The statical structure of the network is described by a directed and weighted graph whose nodes are certain subsets of neurons, and whose edges are the groups of synaptical connections among those subsets. First, we prove that among all the possible networks such that their respective graphs are mutually isomorphic, there exists a dynamical optimum. This optimal network exhibits the richest dynamics: namely, it is capable to show the most diverse set of responses (i.e. orbits in the future) under external stimulus or signals. Second, we prove that all the neurons of a dynamically optimal neuronal network necessarily satisfy Dale's Principle, i.e. each neuron must be either excitatory or inhibitory, but not mixed. So, Dale's Principle is a mathematical necessary consequence of a theoretic optimization process of the dynamics of the network. Finally, we prove that Dale's Principle is not sufficient for the dynamical optimization of the network.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133