全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microscopic Theory of Protein Folding Rates.II: Local Reaction Coordinates and Chain Dynamics

DOI: 10.1063/1.1334663

Full-Text   Cite this paper   Add to My Lib

Abstract:

The motion involved in barrier crossing for protein folding are investigated in terms of the chain dynamics of the polymer backbone, completing the microscopic description of protein folding presented in the previous paper. Local reaction coordinates are identified as collective growth modes of the unstable fluctuations about the saddle-points in the free energy surface. The description of the chain dynamics incorporates internal friction (independent of the solvent viscosity) arising from the elementary isomerizations of the backbone dihedral angles. We find that the folding rate depends linearly on the solvent friction for high viscosity, but saturates at low viscosity because of internal friction. For $\lambda$-repressor, the calculated folding rate prefactor, along with the free energy barrier from the variational theory, gives a folding rate that agrees well with the experimentally determined rate under highly stabilizing conditions, but the theory predicts too large a folding rate at the transition midpoint. This discrepancy obtained using a fairly complete quantitative theory inspires a new set of questions about chain dynamics, specifically detailed motions in individual contact formation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133