全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Compression via Compressive Sensing : A Low-Power Framework for the Telemonitoring of Multi-Channel Physiological Signals

Full-Text   Cite this paper   Add to My Lib

Abstract:

Telehealth and wearable equipment can deliver personal healthcare and necessary treatment remotely. One major challenge is transmitting large amount of biosignals through wireless networks. The limited battery life calls for low-power data compressors. Compressive Sensing (CS) has proved to be a low-power compressor. In this study, we apply CS on the compression of multichannel biosignals. We firstly develop an efficient CS algorithm from the Block Sparse Bayesian Learning (BSBL) framework. It is based on a combination of the block sparse model and multiple measurement vector model. Experiments on real-life Fetal ECGs showed that the proposed algorithm has high fidelity and efficiency. Implemented in hardware, the proposed algorithm was compared to a Discrete Wavelet Transform (DWT) based algorithm, verifying the proposed one has low power consumption and occupies less computational resources.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133