全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SEEDS: Superpixels Extracted via Energy-Driven Sampling

Full-Text   Cite this paper   Add to My Lib

Abstract:

Superpixel algorithms aim to over-segment the image by grouping pixels that belong to the same object. Many state-of-the-art superpixel algorithms rely on minimizing objective functions to enforce color ho- mogeneity. The optimization is accomplished by sophis- ticated methods that progressively build the superpix- els, typically by adding cuts or growing superpixels. As a result, they are computationally too expensive for real-time applications. We introduce a new approach based on a simple hill-climbing optimization. Starting from an initial superpixel partitioning, it continuously refines the superpixels by modifying the boundaries. We define a robust and fast to evaluate energy function, based on enforcing color similarity between the bound- aries and the superpixel color histogram. In a series of experiments, we show that we achieve an excellent com- promise between accuracy and efficiency. We are able to achieve a performance comparable to the state-of- the-art, but in real-time on a single Intel i7 CPU at 2.8GHz.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133