全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phase Transitions for the Uniform Distribution in the PML Problem and its Bethe Approximation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The pattern maximum likelihood (PML) estimate, introduced by Orlitsky et al., is an estimate of the multiset of probabilities in an unknown probability distribution $\mathbf{p}$, the estimate being obtained from $n$ i.i.d. samples drawn from $\mathbf{p}$. The PML estimate involves solving a difficult optimization problem over the set of all probability mass functions (pmfs) of finite support. In this paper, we describe an interesting phase transition phenomenon in the PML estimate: at a certain sharp threshold, the uniform distribution goes from being a local maximum to being a local minimum for the optimization problem in the estimate. We go on to consider the question of whether a similar phase transition phenomenon also exists in the Bethe approximation of the PML estimate, the latter being an approximation method with origins in statistical physics. We show that the answer to this question is a qualified "Yes". Our analysis involves the computation of the mean and variance of the $(i,j)$th entry, $a_{i,j}$, in a random $k \times k$ non-negative integer matrix $A$ with row and column sums all equal to $M$, drawn according to a distribution that assigns to $A$ a probability proportional to $\prod_{i,j} \frac{(M-a_{i,j})!}{a_{i,j}!}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133