全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Approximation with Random Bases: Pro et Contra

DOI: 10.1016/j.ins.2015.09.021

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we discuss the problem of selecting suitable approximators from families of parameterized elementary functions that are known to be dense in a Hilbert space of functions. We consider and analyze published procedures, both randomized and deterministic, for selecting elements from these families that have been shown to ensure the rate of convergence in $L_2$ norm of order $O(1/N)$, where $N$ is the number of elements. We show that both randomized and deterministic procedures are successful if additional information about the families of functions to be approximated is provided. In the absence of such additional information one may observe exponential growth of the number of terms needed to approximate the function and/or extreme sensitivity of the outcome of the approximation to parameters. Implications of our analysis for applications of neural networks in modeling and control are illustrated with examples.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133