全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Weighted Sampling Without Replacement from Data Streams

Full-Text   Cite this paper   Add to My Lib

Abstract:

Weighted sampling without replacement has proved to be a very important tool in designing new algorithms. Efraimidis and Spirakis (IPL 2006) presented an algorithm for weighted sampling without replacement from data streams. Their algorithm works under the assumption of precise computations over the interval [0,1]. Cohen and Kaplan (VLDB 2008) used similar methods for their bottom-k sketches. Efraimidis and Spirakis ask as an open question whether using finite precision arithmetic impacts the accuracy of their algorithm. In this paper we show a method to avoid this problem by providing a precise reduction from k-sampling without replacement to k-sampling with replacement. We call the resulting method Cascade Sampling.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133