全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constant-Factor Approximation for TSP with Disks

Full-Text   Cite this paper   Add to My Lib

Abstract:

We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of $n$ disks in the plane, a TSP tour whose length is at most $O(1)$ times the optimal with high probability can be computed in time that is polynomial in $n$. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a $O(1)$-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133