全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Robust Subgraph Generation Improves Abstract Meaning Representation Parsing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Abstract Meaning Representation (AMR) is a representation for open-domain rich semantics, with potential use in fields like event extraction and machine translation. Node generation, typically done using a simple dictionary lookup, is currently an important limiting factor in AMR parsing. We propose a small set of actions that derive AMR subgraphs by transformations on spans of text, which allows for more robust learning of this stage. Our set of construction actions generalize better than the previous approach, and can be learned with a simple classifier. We improve on the previous state-of-the-art result for AMR parsing, boosting end-to-end performance by 3 F$_1$ on both the LDC2013E117 and LDC2014T12 datasets.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133