全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Author Identification using Multi-headed Recurrent Neural Networks

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recurrent neural networks (RNNs) are very good at modelling the flow of text, but typically need to be trained on a far larger corpus than is available for the PAN 2015 Author Identification task. This paper describes a novel approach where the output layer of a character-level RNN language model is split into several independent predictive sub-models, each representing an author, while the recurrent layer is shared by all. This allows the recurrent layer to model the language as a whole without over-fitting, while the outputs select aspects of the underlying model that reflect their author's style. The method proves competitive, ranking first in two of the four languages.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133