全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generalized Mass-Action Systems and Positive Solutions of Polynomial Equations with Real and Symbolic Exponents

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dynamical systems arising from chemical reaction networks with mass action kinetics are the subject of chemical reaction network theory (CRNT). In particular, this theory provides statements about uniqueness, existence, and stability of positive steady states for all rate constants and initial conditions. In terms of the corresponding polynomial equations, the results guarantee uniqueness and existence of positive solutions for all positive parameters. We address a recent extension of CRNT, called generalized mass-action systems, where reaction rates are allowed to be power-laws in the concentrations. In particular, the (real) kinetic orders can differ from the (integer) stoichiometric coefficients. As with mass-action kinetics, complex balancing equilibria are determined by the graph Laplacian of the underlying network and can be characterized by binomial equations and parametrized by monomials. In algebraic terms, we focus on a constructive characterization of positive solutions of polynomial equations with real and symbolic exponents. Uniqueness and existence for all rate constants and initial conditions additionally depend on sign vectors of the stoichiometric and kinetic-order subspaces. This leads to a generalization of Birch's theorem, which is robust with respect to certain perturbations in the exponents. In this context, we discuss the occurrence of multiple complex balancing equilibria. We illustrate our results by a running example and provide a MAPLE worksheet with implementations of all algorithmic methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133