全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computational Lower Bounds for Community Detection on Random Graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies the problem of detecting the presence of a small dense community planted in a large Erd\H{o}s-R\'enyi random graph $\mathcal{G}(N,q)$, where the edge probability within the community exceeds $q$ by a constant factor. Assuming the hardness of the planted clique detection problem, we show that the computational complexity of detecting the community exhibits the following phase transition phenomenon: As the graph size $N$ grows and the graph becomes sparser according to $q=N^{-\alpha}$, there exists a critical value of $\alpha = \frac{2}{3}$, below which there exists a computationally intensive procedure that can detect far smaller communities than any computationally efficient procedure, and above which a linear-time procedure is statistically optimal. The results also lead to the average-case hardness results for recovering the dense community and approximating the densest $K$-subgraph.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133