全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TreQ-CG: Clustering Accelerates High-Throughput Sequencing Read Mapping

Full-Text   Cite this paper   Add to My Lib

Abstract:

As high-throughput sequencers become standard equipment outside of sequencing centers, there is an increasing need for efficient methods for pre-processing and primary analysis. While a vast literature proposes methods for HTS data analysis, we argue that significant improvements can still be gained by exploiting expensive pre-processing steps which can be amortized with savings from later stages. We propose a method to accelerate and improve read mapping based on an initial clustering of possibly billions of high-throughput sequencing reads, yielding clusters of high stringency and a high degree of overlap. This clustering improves on the state-of-the-art in running time for small datasets and, for the first time, makes clustering high-coverage human libraries feasible. Given the efficiently computed clusters, only one representative read from each cluster needs to be mapped using a traditional readmapper such as BWA, instead of individually mapping all reads. On human reads, all processing steps, including clustering and mapping, only require 11%-59% of the time for individually mapping all reads, achieving speed-ups for all readmappers, while minimally affecting mapping quality. This accelerates a highly sensitive readmapper such as Stampy to be competitive with a fast readmapper such as BWA on unclustered reads.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133