全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rainbow Colouring of Split Graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

A rainbow path in an edge coloured graph is a path in which no two edges are coloured the same. A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one rainbow path. The minimum number of colours required to rainbow colour G is called its rainbow connection number. Between them, Chakraborty et al. [J. Comb. Optim., 2011] and Ananth et al. [FSTTCS, 2012] have shown that for every integer k, k \geq 2, it is NP-complete to decide whether a given graph can be rainbow coloured using k colours. A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. Chandran and Rajendraprasad have shown that the problem of deciding whether a given split graph G can be rainbow coloured using 3 colours is NP-complete and further have described a linear time algorithm to rainbow colour any split graph using at most one colour more than the optimum [COCOON, 2012]. In this article, we settle the computational complexity of the problem on split graphs and thereby discover an interesting dichotomy. Specifically, we show that the problem of deciding whether a given split graph can be rainbow coloured using k colours is NP-complete for k \in {2,3}, but can be solved in polynomial time for all other values of k.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133