全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On integers as the sum of a prime and a $k$-th power

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\mathcal{R}_k(n)$ be the number of representations of an integer $n$ as the sum of a prime and a $k$-th power. Define E_k(X) := |\{n \le X, n \in I_k, n\text{not a sum of a prime and a $k$-th power}\}|. Hardy and Littlewood conjectured that for $k = 2$ and $k=3$, E_k(X) \ll_{k} 1. In this note we present an alternative approach grounded in the theory of Diophantine equations towards a proof of the conjecture for all $k \ge 2$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133