全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The threshold for random (1,2)-QSAT

Full-Text   Cite this paper   Add to My Lib

Abstract:

The QSAT problem is the quantified version of the SAT problem. We show the existence of a threshold effect for the phase transition associated with the satisfiability of random quantified extended 2-CNF formulas. We consider boolean CNF formulas of the form $\forall X \exists Y \varphi(X,Y)$, where $X$ has $m$ variables, $Y$ has $n$ variables and each clause in $\varphi$ has one literal from $X$ and two from $Y$. For such formulas, we show that the threshold phenomenon is controlled by the ratio between the number of clauses and the number $n$ of existential variables. Then we give the exact location of the associated critical ratio $c^{*}$. Indeed, we prove that $c^{*}$ is a decreasing function of $ \alpha$, where $\alpha$ is the limiting value of $m / \log (n)$ when $n$ tends to infinity.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133