全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multi-scale recognition with DAG-CNNs

Full-Text   Cite this paper   Add to My Lib

Abstract:

We explore multi-scale convolutional neural nets (CNNs) for image classification. Contemporary approaches extract features from a single output layer. By extracting features from multiple layers, one can simultaneously reason about high, mid, and low-level features during classification. The resulting multi-scale architecture can itself be seen as a feed-forward model that is structured as a directed acyclic graph (DAG-CNNs). We use DAG-CNNs to learn a set of multiscale features that can be effectively shared between coarse and fine-grained classification tasks. While fine-tuning such models helps performance, we show that even "off-the-self" multiscale features perform quite well. We present extensive analysis and demonstrate state-of-the-art classification performance on three standard scene benchmarks (SUN397, MIT67, and Scene15). In terms of the heavily benchmarked MIT67 and Scene15 datasets, our results reduce the lowest previously-reported error by 23.9% and 9.5%, respectively.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133