|
Computer Science 2015
Sparse Automatic Differentiation for Large-Scale Computations Using Abstract Elementary AlgebraAbstract: Most numerical solvers and libraries nowadays are implemented to use mathematical models created with language-specific built-in data types (e.g. real in Fortran or double in C) and their respective elementary algebra implementations. However, built-in elementary algebra typically has limited functionality and often restricts flexibility of mathematical models and analysis types that can be applied to those models. To overcome this limitation, a number of domain-specific languages with more feature-rich built-in data types have been proposed. In this paper, we argue that if numerical libraries and solvers are designed to use abstract elementary algebra rather than language-specific built-in algebra, modern mainstream languages can be as effective as any domain-specific language. We illustrate our ideas using the example of sparse Jacobian matrix computation. We implement an automatic differentiation method that takes advantage of sparse system structures and is straightforward to parallelize in MPI setting. Furthermore, we show that the computational cost scales linearly with the size of the system.
|