全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most of the current boundary detection systems rely exclusively on low-level features, such as color and texture. However, perception studies suggest that humans employ object-level reasoning when judging if a particular pixel is a boundary. Inspired by this observation, in this work we show how to predict boundaries by exploiting object-level features from a pretrained object-classification network. Our method can be viewed as a "High-for-Low" approach where high-level object features inform the low-level boundary detection process. Our model achieves state-of-the-art performance on an established boundary detection benchmark and it is efficient to run. Additionally, we show that due to the semantic nature of our boundaries we can use them to aid a number of high-level vision tasks. We demonstrate that using our boundaries we improve the performance of state-of-the-art methods on the problems of semantic boundary labeling, semantic segmentation and object proposal generation. We can view this process as a "Low-for-High" scheme, where low-level boundaries aid high-level vision tasks. Thus, our contributions include a boundary detection system that is accurate, efficient, generalizes well to multiple datasets, and is also shown to improve existing state-of-the-art high-level vision methods on three distinct tasks.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133