全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Lyapunov function for Glauber dynamics on lattice triangulations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study random triangulations of the integer points $[0,n]^2 \cap\mathbb{Z}^2$, where each triangulation $\sigma$ has probability measure $\lambda^{|\sigma|}$ with $|\sigma|$ denoting the sum of the length of the edges in $\sigma$. Such triangulations are called \emph{lattice triangulations}. We construct a height function on lattice triangulations and prove that, in the whole subcritical regime $\lambda<1$, the function behaves as a \emph{Lyapunov function} with respect to Glauber dynamics; that is, the function is a supermartingale. We show the applicability of the above result by establishing several features of lattice triangulations, such as tightness of local measures, exponential tail of edge lengths, crossings of small triangles, and decay of correlations in thin rectangles. These are the first results on lattice triangulations that are valid in the whole subcritical regime $\lambda<1$. In a very recent work with Caputo, Martinelli and Sinclair, we apply this Lyapunov function to establish tight bounds on the mixing time of Glauber dynamics in thin rectangles that hold for all $\lambda<1$. The Lyapunov function result here holds in great generality; it holds for triangulations of general lattice polygons (instead of the $[0,n]^2$ square) and also in the presence of arbitrary constraint edges.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133