全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Hebbian/Anti-Hebbian Neural Network for Linear Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data

DOI: 10.1162/NECO_a_00745

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neural network models of early sensory processing typically reduce the dimensionality of streaming input data. Such networks learn the principal subspace, in the sense of principal component analysis (PCA), by adjusting synaptic weights according to activity-dependent learning rules. When derived from a principled cost function these rules are nonlocal and hence biologically implausible. At the same time, biologically plausible local rules have been postulated rather than derived from a principled cost function. Here, to bridge this gap, we derive a biologically plausible network for subspace learning on streaming data by minimizing a principled cost function. In a departure from previous work, where cost was quantified by the representation, or reconstruction, error, we adopt a multidimensional scaling (MDS) cost function for streaming data. The resulting algorithm relies only on biologically plausible Hebbian and anti-Hebbian local learning rules. In a stochastic setting, synaptic weights converge to a stationary state which projects the input data onto the principal subspace. If the data are generated by a nonstationary distribution, the network can track the principal subspace. Thus, our result makes a step towards an algorithmic theory of neural computation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133