全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using Latent Semantic Analysis to Identify Quality in Use (QU) Indicators from User Reviews

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper describes a novel approach to categorize users' reviews according to the three Quality in Use (QU) indicators defined in ISO: effectiveness, efficiency and freedom from risk. With the tremendous amount of reviews published each day, there is a need to automatically summarize user reviews to inform us if any of the software able to meet requirement of a company according to the quality requirements. We implemented the method of Latent Semantic Analysis (LSA) and its subspace to predict QU indicators. We build a reduced dimensionality universal semantic space from Information System journals and Amazon reviews. Next, we projected set of indicators' measurement scales into the universal semantic space and represent them as subspace. In the subspace, we can map similar measurement scales to the unseen reviews and predict the QU indicators. Our preliminary study able to obtain the average of F-measure, 0.3627.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133