全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reified Context Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

A classic tension exists between exact inference in a simple model and approximate inference in a complex model. The latter offers expressivity and thus accuracy, but the former provides coverage of the space, an important property for confidence estimation and learning with indirect supervision. In this work, we introduce a new approach, reified context models, to reconcile this tension. Specifically, we let the amount of context (the arity of the factors in a graphical model) be chosen "at run-time" by reifying it---that is, letting this choice itself be a random variable inside the model. Empirically, we show that our approach obtains expressivity and coverage on three natural language tasks.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133