全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temporal Embedding in Convolutional Neural Networks for Robust Learning of Abstract Snippets

Full-Text   Cite this paper   Add to My Lib

Abstract:

The prediction of periodical time-series remains challenging due to various types of data distortions and misalignments. Here, we propose a novel model called Temporal embedding-enhanced convolutional neural Network (TeNet) to learn repeatedly-occurring-yet-hidden structural elements in periodical time-series, called abstract snippets, for predicting future changes. Our model uses convolutional neural networks and embeds a time-series with its potential neighbors in the temporal domain for aligning it to the dominant patterns in the dataset. The model is robust to distortions and misalignments in the temporal domain and demonstrates strong prediction power for periodical time-series. We conduct extensive experiments and discover that the proposed model shows significant and consistent advantages over existing methods on a variety of data modalities ranging from human mobility to household power consumption records. Empirical results indicate that the model is robust to various factors such as number of samples, variance of data, numerical ranges of data etc. The experiments also verify that the intuition behind the model can be generalized to multiple data types and applications and promises significant improvement in prediction performances across the datasets studied.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133