全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Greedy Minimization of Weakly Supermodular Set Functions

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper defines weak-$\alpha$-supermodularity for set functions. Many optimization objectives in machine learning and data mining seek to minimize such functions under cardinality constrains. We prove that such problems benefit from a greedy extension phase. Explicitly, let $S^*$ be the optimal set of cardinality $k$ that minimizes $f$ and let $S_0$ be an initial solution such that $f(S_0)/f(S^*) \le \rho$. Then, a greedy extension $S \supset S_0$ of size $|S| \le |S_0| + \lceil \alpha k \ln(\rho/\varepsilon) \rceil$ yields $f(S)/f(S^*) \le 1+\varepsilon$. As example usages of this framework we give new bicriteria results for $k$-means, sparse regression, and columns subset selection.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133