全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Parallel Identity Testing for Skew Circuits with Big Powers and Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

Powerful skew arithmetic circuits are introduced. These are skew arithmetic circuits with variables, where input gates can be labelled with powers $x^n$ for binary encoded numbers $n$. It is shown that polynomial identity testing for powerful skew arithmetic circuits belongs to $\mathsf{coRNC}^2$, which generalizes a corresponding result for (standard) skew circuits. Two applications of this result are presented: (i) Equivalence of higher-dimensional straight-line programs can be tested in $\mathsf{coRNC}^2$; this result is even new in the one-dimensional case, where the straight-line programs produce strings. (ii) The compressed word problem (or circuit evaluation problem) for certain wreath products of finitely generated abelian groups belongs to $\mathsf{coRNC}^2$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133