全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Slice Sampling for Probabilistic Programming

Full-Text   Cite this paper   Add to My Lib

Abstract:

We introduce the first, general purpose, slice sampling inference engine for probabilistic programs. This engine is released as part of StocPy, a new Turing-Complete probabilistic programming language, available as a Python library. We present a transdimensional generalisation of slice sampling which is necessary for the inference engine to work on traces with different numbers of random variables. We show that StocPy compares favourably to other PPLs in terms of flexibility and usability, and that slice sampling can outperform previously introduced inference methods. Our experiments include a logistic regression, HMM, and Bayesian Neural Net.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133