全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Factorization, Inference and Parameter Learning in Discrete AMP Chain Graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

We address some computational issues that may hinder the use of AMP chain graphs in practice. Specifically, we show how a discrete probability distribution that satisfies all the independencies represented by an AMP chain graph factorizes according to it. We show how this factorization makes it possible to perform inference and parameter learning efficiently, by adapting existing algorithms for Markov and Bayesian networks. Finally, we turn our attention to another issue that may hinder the use of AMP CGs, namely the lack of an intuitive interpretation of their edges. We provide one such interpretation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133