全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Convex Boosting Overcomes Random Label Noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

The sensitivity of Adaboost to random label noise is a well-studied problem. LogitBoost, BrownBoost and RobustBoost are boosting algorithms claimed to be less sensitive to noise than AdaBoost. We present the results of experiments evaluating these algorithms on both synthetic and real datasets. We compare the performance on each of datasets when the labels are corrupted by different levels of independent label noise. In presence of random label noise, we found that BrownBoost and RobustBoost perform significantly better than AdaBoost and LogitBoost, while the difference between each pair of algorithms is insignificant. We provide an explanation for the difference based on the margin distributions of the algorithms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133